2 research outputs found

    Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations

    Get PDF
    Micro milling process of CuZn37 brass is considered important due to applications in tool production for micro moulding and micro replication technology. The variations in material properties, work material adhesion to tool surfaces, burr formation, and tool wear result in loss of productivity. The deformed chip shapes together with localized temperature, plastic strain, and cutting forces during micro milling process can be predicted using finite element (FE) modeling and simulation. However, toolworkpiece engagement suffers from tool run-out affecting process performance in surface generation. This work provides experimental investigations on effects of tool run-out as well as process insight obtained from simulation of chip flow, with and without considering tool run-out. Scanning electron microscope (SEM) observation of the 3D chip shapes demonstrates ductile deformed surfaces together with localized serration behavior. FE simulations are utilized to investigate the effects of micro milling operation, cutting speed, and feed rate on forces, chip flow, and shapes. Predicted cutting forces and chip flow results from simulations are compared with force measurements, tool run-out, and chip morphology revealing reasonable agreements

    THE INFLUENCE OF CRYOGENIC MACHINING ON SURFACE INTEGRITY AND FUNCTIONAL PERFORMANCE OF TITANIUM ALLOYS FOR BIOMEDICAL AND AEROSPACE APPLICATIONS

    Get PDF
    The excellent properties of titanium alloys such as high strength, as well as good corrosion and fatigue resistance are desirable for the biomedical and aerospace industry. However, the same properties that make titanium alloys desirable in high-performance applications also make these space-age materials “difficult-to-machine” materials, as the titanium alloys exhibit high cutting temperatures because of their high strength and low thermal conductivity. Cryogenic machining is a severe plastic deformation (SPD) processes which uses liquid nitrogen as the coolant to take away the heat generated during machining in a relatively short time. Cryogenic machining can significantly reduce the cutting temperatures at the tool-workpiece interface, thereby improving the surface integrity of the manufactured components. This dissertation presents the results of experimental and numerical investigations of the effects of different cooling conditions on the machining performance and machining-induced surface integrity of Ti-6Al-7Nb and Ti-5553 alloys. Surface integrity and residual stresses induced by cryogenic machining are studied and compared with dry machining. Corrosion tests were also conducted to study the influence of machining parameters on the corrosion resistance of machined Ti-6Al-7Nb alloy. The results of the numerical and experimental studies show that compared with dry machining, cryogenic machining generates superior surface finish, along with higher surface layer hardening. The sub-surface residual stress profile is more compressive after cryogenic machining, and evidence of nanostructured grains is also observed in the influenced surface layer under both cooling conditions. Also, cryogenically-cooled machined sample showed better corrosion resistance compared with dry machined sample
    corecore