39,431 research outputs found

    Chance-Constrained Outage Scheduling using a Machine Learning Proxy

    Full text link
    Outage scheduling aims at defining, over a horizon of several months to years, when different components needing maintenance should be taken out of operation. Its objective is to minimize operation-cost expectation while satisfying reliability-related constraints. We propose a distributed scenario-based chance-constrained optimization formulation for this problem. To tackle tractability issues arising in large networks, we use machine learning to build a proxy for predicting outcomes of power system operation processes in this context. On the IEEE-RTS79 and IEEE-RTS96 networks, our solution obtains cheaper and more reliable plans than other candidates

    A hierarchical Bayesian approach to record linkage and population size problems

    Full text link
    We propose and illustrate a hierarchical Bayesian approach for matching statistical records observed on different occasions. We show how this model can be profitably adopted both in record linkage problems and in capture--recapture setups, where the size of a finite population is the real object of interest. There are at least two important differences between the proposed model-based approach and the current practice in record linkage. First, the statistical model is built up on the actually observed categorical variables and no reduction (to 0--1 comparisons) of the available information takes place. Second, the hierarchical structure of the model allows a two-way propagation of the uncertainty between the parameter estimation step and the matching procedure so that no plug-in estimates are used and the correct uncertainty is accounted for both in estimating the population size and in performing the record linkage. We illustrate and motivate our proposal through a real data example and simulations.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS447 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    OCL Plus:Processes and Events in Object-Centred Planning

    Get PDF
    An important area in AI Planning is the expressiveness of planning domain specification languages such as PDDL, and their aptitude for modelling real applications. This paper presents OCLplus, an extension of a hierarchical object centred planning domain definition language, intended to support the representation of domains with continuous change. The main extension in OCLplus provides the capability of interconnection between the planners and the changes that are caused by other objects of the world. To this extent, the concept of event and process are introduced in the Hierarchical Task Network (HTN), object centred planning framework in which a process is responsible for either continuous or discrete changes, and an event is triggered if its precondition is met. We evaluate the use of OCLplus and compare it with a similar language, PDDL+

    A Distributed Model Predictive Control Framework for Road-Following Formation Control of Car-like Vehicles (Extended Version)

    Full text link
    This work presents a novel framework for the formation control of multiple autonomous ground vehicles in an on-road environment. Unique challenges of this problem lie in 1) the design of collision avoidance strategies with obstacles and with other vehicles in a highly structured environment, 2) dynamic reconfiguration of the formation to handle different task specifications. In this paper, we design a local MPC-based tracking controller for each individual vehicle to follow a reference trajectory while satisfying various constraints (kinematics and dynamics, collision avoidance, \textit{etc.}). The reference trajectory of a vehicle is computed from its leader's trajectory, based on a pre-defined formation tree. We use logic rules to organize the collision avoidance behaviors of member vehicles. Moreover, we propose a methodology to safely reconfigure the formation on-the-fly. The proposed framework has been validated using high-fidelity simulations.Comment: Extended version of the conference paper submission on ICARCV'1

    Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties

    Full text link
    A shortcoming of existing reachability approaches for nonlinear systems is the poor scalability with the number of continuous state variables. To mitigate this problem we present a simulation-based approach where we first sample a number of trajectories of the system and next establish bounds on the convergence or divergence between the samples and neighboring trajectories. We compute these bounds using contraction theory and reduce the conservatism by partitioning the state vector into several components and analyzing contraction properties separately in each direction. Among other benefits this allows us to analyze the effect of constant but uncertain parameters by treating them as state variables and partitioning them into a separate direction. We next present a numerical procedure to search for weighted norms that yield a prescribed contraction rate, which can be incorporated in the reachability algorithm to adjust the weights to minimize the growth of the reachable set
    • …
    corecore