4 research outputs found

    A multi-criteria h-adaptive finite-element framework for industrial part-scale thermal analysis in additive manufacturing processes

    Get PDF
    This work presents an h-adaptive finite-element (FE) strategy to address the numerical simulation of additive manufacturing (AM) of large-scale parts. The wire-arc additive manufacturing is chosen as the demonstrative technology for its manufacturing capabilities suitable for industrial purposes. The scanning path and processing parameters of the simulation are provided via a RS-274 (GCode) file, being the same as the one delivered to the AM machine. The approach is suitable for industrial applications and can be applied to other AM processes. To identify the location in the FE mesh of the heat affected zone (HAZ), a collision detection algorithm based on the separating axis theorem is used. The mesh is continuously adapted to guarantee the necessary mesh resolution to capture the phenomena inside and outside the HAZ. To do so, a multi-criteria adaptive mesh refinement and coarsening (AMR) strategy is used. The AMR includes a geometrical criterion to guarantee the FE size within the HAZ, and a Zienkiewicz鈥揨hu-based a-posteriori error estimator to guarantee the solution accuracy elsewhere. Thus, the number of active FEs is controlled and mesh manipulation by the end-user is avoided. Numerical simulations comparing the h-adaptive strategy with the (reference) fixed fine meshes are performed to prove the computational cost efficiency and the solution accuracy.The financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R&D (CEX2018-000797-S), is gratefully acknowledged. This work has been supported by the European Union鈥檚 horizon 2020 research and innovation programme (H2020-DT-2019-1 no. 872570) under the KYKLOS 4.0 Project (An Advanced Circular and Agile Manufacturing Ecosystem based on rapid reconfigurable manufacturing process and individualized consumer preferences) and by the Ministry of Science, Innovation and Universities (MCIU) via: the PriMuS project (Printing pattern based and MultiScale enhanced performance analysis of advanced Additive Manufacturing components, ref. num. PID2020-115575RB-I00). J. Baiges gratefully acknowledges the support of the Spanish Government through the Ram贸n y Cajal Grant RYC-2015-17367. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Peer ReviewedPostprint (published version

    Simulation of Transient Temperature Field in the Selective Laser Sintering Process of W/Ni Powder Mixture

    No full text
    Abstract. Selective laser sintering (SLS) is an attractive rapid prototyping and manufacturing (RP&M) technology as well as two-component metal powder has high melting pointer, high mechanical properties and high wear resistance. Hence, it's meaningful to analyze its temperature field distribution and dynamical evolution rule in sintering process. A three-dimensional transient finite element model of SLS on the two-component metal powder W/Ni has been developed to predict the temperature field distribution in this paper. The dynamically loading of the moving Gaussian laser thermal resource was realized using the element "birth and death" technology and the ANSYS Parameter Design Language (APDL) in the model. Considering comprehensively thermal convection and the non-linear behavior of material properties etc., the temperature evolution of SLS process has been simulated effectively. The interrelation between the temperature field distribution and the processing parameters are analyzed. The sintering width and depth under certain selected sintering parameters are obtained so as to judge the metallurgical bonding performance between substrate and layers. The result of simulation can provide the theoretical basis for selecting reasonable processing parameters. Keywords: Selective laser sintering; Finite element simulation; Temperature field; Molten pool. Introduction Selective laser sintering(SLS) is an attractive process in the new field of rapid prototyping (RP) which is such an advance manufacturing technology that integrates laser technology, precision machinery, computer-aided design, computer-aided manufacturing, computer numerical control, control technology, and material technolog

    Finite element simulation of additive manufacturing with enhanced accuracy

    Get PDF
    Tesi en modalitat de compendi de publicacionsThis thesis develops numerical methods to improve the accuracy and computational efficiency of the part-scale simulation of Additive Manufacturing (AM) (or 3D printing) metal processes. AM is characterized by multiple scales in space and time, as well as multiple complex physics that occur in three-dimensional growing-in-time geometries, making its simulation a remarkable computational challenge. To this end, the computational framework is built by addressing four key topics: (1) a Finite Element technology with enhanced stress/strain accuracy including the incompressible limit; (2) an Adaptive Mesh Refinement (AMR) strategy accounting for geometric and solution accuracies; (3) a coarsening correction strategy to avoid loss of information in the coarsening AMR procedure, and (4) a GCodebased simulation tool that uses the exact geometric and process parameters data provided to the actual AM machinery. In this context, the mixed displacement/deviatoric-strain/pressure u/e/p FE formulation in (1) is adopted to solve incompressible problems resulting from the isochoric plastic flow in the Von Mises criterion typical of metals. The enhanced stress/strain accuracy of the u/e/p over the standard and u/p FE formulations is verified in a set of numerical benchmarks in iso-thermal and non-isothermal conditions. A multi-criteria AMR strategy in (2) is used to improve computational efficiency while keeping the number of FEs controlled and without the strictness of imposing the commonly adopted 2:1 balance scheme. Avoiding this enables to use high jumps on the refinement level between adjacent FEs; this improves the mesh resolution on the region of interest and keeps the mesh coarse elsewhere. Moving the FE solution from a fine mesh to a coarse mesh introduces loss of information. To prevent this, a coarsening correction strategy presented in (3) restores the fine solution in the coarse mesh, providing computational cost reduction and keeping the accuracy of the fine mesh solution accuracy. Lastly, design flexibility is one of the main advantages of AM over traditional manufacturing processes. This flexibility is observed in the design of complex components and the possibility to change the process parameters, i.e. power input, speed, waiting pauses, among others, throughout the process. In (4) a GCode-based simulation tool that replicates the exact path travelled and process parameters delivered to the AM machiney is developed. Furthermore, the GCode-based tool together with the AMR strategy allows to automatically generate an embedded fitted cartesian FE mesh for the evolving domain and removes the challenging task of mesh manipulation by the end-user. The FE framework is built on a high-performance computing environment. This framework enables to accelerate the process-to-performance understanding and to minimize the number of trial-and-error experiments, two key aspects to exploit the technology in the industrial environment.Esta tesis tiene como objetivo desarrollar m茅todos num茅ricos para mejorar la precisi贸n y eficiencia computacionales en simulaciones de piezas fabricadas mediante Manufactura Aditiva (MA), tambi茅n conocida como Impresi贸n 3D. La manufactura aditiva es un problema complejo que involucra m煤ltiples fen贸menos f铆sicos, que se desarolla en m煤ltiples escalas, y cuya geometr铆a evoluciona en el tiempo. Para tal fin, se plantean cuatro objetivos: (1) Desarrollo de una tecnolog铆a de elementos finitos para capturar con mayor precisi贸n tanto tensiones como deformaciones en casos en el que el material tiene comportamiento isoc贸rico; (2) Una estrategia de adaptividad de malla (AMR), que busca modificar la malla teniendo en cuenta la geometr铆a y los errores en la soluci贸n num茅rica; (3) Una estrategia para minimizar la aproximaci贸n num茅rica durante el engrosamiento (coarsening) de la malla, crucial en la reducci贸n de tiempos de c贸mputo en casos de piezas de grandes dimensiones; y (4) Un marco de simulaci贸n basado en la lectura de ficheros GCode, ampliamente usado por maquinaria de impresi贸n en procesos de manufactura aditiva, un formato que no s贸lo proporciona los datos asociados a la geometr铆a, sino tambi茅n los par谩metros de proceso. Con respecto a (1), esta tesis propone el uso de una formulaci贸n mixta en desplazamientos /deformaci贸n-desviadora / presi贸n (u/e/p), para simular la deposici贸n de materiales con deformaci贸n inel谩stica isoc贸rica, como ocurre en los metales. En cuanto a la medici贸n de la precisi贸n en el c谩lculo de las tensiones y las deformaciones, en esta tesis se realiza un amplio n煤mero de experimentos tanto en condiciones isot茅rmicas como no isot茅rmicas para establecer una comparativa entre las dos formulaciones mixtas, u/e/p y u/p. Con respecto a (2), para mejorar la eficiencia computacional manteniendo acotado el n煤mero total de elementos finitos, se desarrolla una novedosa estrategia multicriterio de refinamiento adaptativo. Esta estrategia no se restringe a mallas con balance 2:1, permitiendo as铆 tener saltos de nivel mayores entre elementos adyacentes. Por otra parte, para evitar la p茅rdida de informaci贸n al proyectar la soluci贸n a mallas m谩s gruesas, se plantee una correcci贸n en (3), que tiene como objetivo recuperar la soluci贸n de la malla fina, garantizando as铆 que la malla gruesa conserve la precisi贸n obtenida en la malla fina. El proceso de manufactura aditiva se distingue por su gran flexibilidad compar谩ndolo con otros m茅todos tradicionales de manufactura. Esta flexibilidad se observa en la posibilidad de construir piezas de gran complejidad geom茅trica, optimizando propiedades mec谩nicas durante el proceso de deposici贸n. Por ese motivo, (4) se propone la lectura de ficheros en formato GCode que replica la ruta exacta del recorrido del l谩ser que realiza la deposici贸n del material. Los ingredientes lectura de comandos escritos en lenguaje Gcode, multicriterio de adaptividad de malla y el uso de mallas estructuradas basadas en octrees, permiten capturar con gran precisi贸n el dominio discreto eliminando as铆 la engorrosa tarea de generar un dominio discreto ad-hoc para la pieza a modelar. Los desarrollos de esta tesis se realizan en un entorno de computaci贸n de altas prestaciones (HPC) que permite acelerar el estudio de la ejecuci贸n del proceso de impresi贸n y por ende reducir el n煤mero de experimentos destructivos, dos aspectos clave que permiten explorar y desarrollar nuevas t茅cnicas en manufactura aditiva de piezas industriales.Postprint (published version
    corecore