1,888 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Using genetic algorithms to generate test sequences for complex timed systems

    Get PDF
    The generation of test data for state based specifications is a computationally expensive process. This problem is magnified if we consider that time con- straints have to be taken into account to govern the transitions of the studied system. The main goal of this paper is to introduce a complete methodology, sup- ported by tools, that addresses this issue by represent- ing the test data generation problem as an optimisa- tion problem. We use heuristics to generate test cases. In order to assess the suitability of our approach we consider two different case studies: a communication protocol and the scientific application BIPS3D. We give details concerning how the test case generation problem can be presented as a search problem and automated. Genetic algorithms (GAs) and random search are used to generate test data and evaluate the approach. GAs outperform random search and seem to scale well as the problem size increases. It is worth to mention that we use a very simple fitness function that can be eas- ily adapted to be used with other evolutionary search techniques

    Trace checking of Metric Temporal Logic with Aggregating Modalities using MapReduce

    Get PDF
    Modern complex software systems produce a large amount of execution data, often stored in logs. These logs can be analyzed using trace checking techniques to check whether the system complies with its requirements specifications. Often these specifications express quantitative properties of the system, which include timing constraints as well as higher-level constraints on the occurrences of significant events, expressed using aggregate operators. In this paper we present an algorithm that exploits the MapReduce programming model to check specifications expressed in a metric temporal logic with aggregating modalities, over large execution traces. The algorithm exploits the structure of the formula to parallelize the evaluation, with a significant gain in time. We report on the assessment of the implementation - based on the Hadoop framework - of the proposed algorithm and comment on its scalability.Comment: 16 pages, 6 figures, Extended version of the SEFM 2014 pape
    • …
    corecore