1,985 research outputs found

    Toward a Flying MEMS Robot

    Get PDF
    The work in this thesis includes the design, modeling, and testing of motors and rotor blades to be used on a millimeter-scale helicopter style flying micro air vehicle (MAV). Three different types of motor designs were developed and tested, which included circular scratch drives, electrostatic motors, and comb drive resonators. Six different rotor designs were tested; five used residual stress while one design used photoresist to act as a hinge to achieve rotor blade deflection. Two key parameters of performance were used to evaluate the motor and rotor blade designs: the frequency of motor rotation and the angle of deflection achieved in the rotor blades. One successful design utilized a scratch drive motor with four attached rotor blades to try to achieve lift. While the device rotated successfully, the rotational frequency was insufficient to achieve lift-off. The electrostatic motor designs proved to be a challenge, only briefly moving before shorting out; nonetheless, lessons were learned. Comb drive designs operated over a wide range of high frequencies, lending them to be a promising method of turning a rotary MAV. None of the fabricated devices were able to achieve lift, due to insufficient rotational rates and low angles of attack on the rotor blades. With slight modifications to the current designs, the required rotational rates and rotor blade deflections would yield a viable MAV. The ultimate objective of this effort was to create an autonomous MAV on the millimeter scale, able to sense and act upon targets in its environment. Such a craft would be virtually undetectable, stealthily maneuvering and capable of precision engagement

    Power-Scavenging MEMS Robots

    Get PDF
    This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was identified. It also was determined that the actuator-wing configuration with maximum deflection and surface area yet minimum mass had the greatest lift-to-weight ratio. Powered testing results showed that the microrobots successfully scavenged power from a remote 660-nm laser. These microrobots also demonstrated rapid downward flapping, but none achieved flight. The results show that the microrobots were too heavy and lacked sufficient wing surface area. It was determined that a successfully flying microrobot can be achieved by adding a robust, light-weight material to the optimum actuator-wing configuration—similar to insect wings. The ultimate objective of the flying microrobot project is an autonomous, fully maneuverable flying microrobot that is capable of sensing and acting upon a target. Such a microrobot would be capable of precise lethality, accurate battle-damage assessment, and successful penetration of otherwise inaccessible targets

    Definition of avionics concepts for a heavy lift cargo vehicle, appendix A

    Get PDF
    The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility

    Chip to Chip Optical Interconnection Using MEMS Mirrors

    Get PDF
    This experiment explores the use of MEMS mirrors to direct subsurface optical signals to another device and reception of those signals for use in chip to chip communications. Devices were built in PolyMUMPs to control horizontal and vertical beam direction and tilting in the outgoing signal and MEMS beam splitters for the incoming signal. Several elements of the outgoing beam path were successful and those which needed improvement indicate a high probability of success with limited trials needed and currently successful design elements could still be improved within the scope of PolyMUMPs. The incoming beam path elements were not successful as designed and would require the flip chip bonding unit now available at AFIT, or could be realized with a high probability of success and minimal design work with a more sophisticated fabrication process (such as SUMMiT)

    Surface tension-powered self-assembly of micro structures - The state-of-the-art

    No full text
    Published versio

    Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces

    Get PDF
    Piezoelectric actuators (PEA) hold the most promise for precision positioning applications due to their capability of producing extremely small displacements down to 10 pm (1 pm = 10-12 m) as well as their high stiffness and force output. The piezoelectric-driven stick-slip (PDSS) actuator, working on the friction-inertia concept, has the capacity of accomplishing an unlimited range of motion. It also holds the promises of simple configuration and low cost. On the other hand, the PDSS actuator has a relatively low efficiency and low loading capability, which greatly limits its applications. The purpose of this research is to improve the performance of the PDSS actuators by employing specially-designed working surfaces. The working surfaces, referred as anisotropic friction (AF) surfaces in this study, can provide different friction forces depending on the direction of relative motion of the two surfaces, and are used in this research to accomplish the aforementioned purpose. To fabricate such surfaces, two nanostructure technologies are employed: hot filament chemical vapour deposition (HFCVD) and ion beam etching (IBE). The HFCVD is used to deposit diamond on silicon substrates; and the IBE is used to etch the diamond crystalloid with a certain angle with respect to the coating surface to obtain an unsymmetrical-triangle microstructure. A PDSS actuator prototype containing the AF surfaces was developed in this study to verify the function of the AF surfaces and characterize the performance of PDSS actuators. The designed surfaces were mounted on the prototype; and the improvement in performance was characterized by conducting a set of experiments with both the normal isotropic friction (IF) surfaces and the AF surfaces, respectively. The results illustrate that the PDSS actuator with the AF surface has a higher efficiency and improved loading capability compared to the one with the IF surfaces. A model was also developed to represent the displacement of the novel PDSS actuator. The dynamics of the PEA and the platform were approximated by using a second order dynamic system. The pre-sliding friction behaviour involved was investigated by modifying the LuGre friction model, in which six parameters (Note that three parameters are used in the LuGre model) were employed to represent the anisotropic friction. By combining the PEA mechanism model, the modified friction model, and the dynamics of end-effector, a model for the PDSS actuator with the AF surface was developed. The model with the identified parameters was simulated in MATLAB Simulink and the simulation results obtained were compared to the experimental results to verify the model. The comparison suggests that the model developed in this study is promising to represent the displacement of the novel PDSS actuators with AF surfaces

    Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report

    Get PDF
    A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines

    MEMS Actuation and Self-Assembly Applied to RF and Optical Devices

    Get PDF
    The focus of this work involves optical and RF (radio frequency) applications of novel microactuation and self-assembly techniques in MEMS (Microelectromechanical systems). The scaling of physical forces into the micro domain is favorably used to design several types of actuators that can provide large forces and large static displacements at low operation voltages. A self-assembly method based on thermally induced localized plastic deformation of microstructures has been developed to obtain truly three-dimensional structures from a planar fabrication process. RF applications include variable discrete components such as capacitors and inductors as well as tunable coupling circuits. Optical applications include scanning micromirrors with large scan angles (>90 degrees), low operation voltages (<10 Volts), and multiple degrees of freedom. One and two-dimensional periodic structures with variable periods and orientations (with respect to an incident wave) are investigated as well, and analyzed using optical phased array concepts. Throughout the research, permanent tuning via plastic deformation and power-off latching techniques are used in order to demonstrate that the optical and RF devices can exhibit zero quiescent power consumption once their geometry is set

    A micromachined zipping variable capacitor

    No full text
    Micro-electro-mechanical systems (MEMS) have become ubiquitous in recent years and are found in a wide range of consumer products. At present, MEMS technology for radio-frequency (RF) applications is maturing steadily, and significant improvements have been demonstrated over solid-state components. A wide range of RF MEMS varactors have been fabricated in the last fifteen years. Despite demonstrating tuning ranges and quality factors that far surpass solid-state varactors, certain challenges remain. Firstly, it is difficult to scale up capacitance values while preserving a small device footprint. Secondly, many highly-tunable MEMS varactors include complex designs or process flows. In this dissertation, a new micromachined zipping variable capacitor suitable for application at 0.1 to 5 GHz is reported. The varactor features a tapered cantilever that zips incrementally onto a dielectric surface when actuated electrostatically by a pulldown electrode. Shaping the cantilever using a width function allows stable actuation and continuous capacitance tuning. Compared to existing MEMS varactors, this device has a simple design that can be implemented using a straightforward process flow. In addition, the zipping varactor is particularly suited for incorporating a highpermittivity dielectric, allowing the capacitance values and tuning range to be scaled up. This is important for portable consumer electronics where a small device footprint is attractive. Three different modelling approaches have been developed for zipping varactor design. A repeatable fabrication process has also been developed for varactors with a silicon dioxide dielectric. In proof-of-concept devices, the highest continuous tuning range is 400% (24 to 121 fF) and the measured quality factors are 123 and 69 (0.1 and 0.7 pF capacitance, respectively) at 2 GHz. The varactors have a compact design and fit within an area of 500 by 100 μm

    Design and Fabrication of Electrothermal Micromotors and Compliant Mechanisms for Spatial Parallel Micromanipulators

    Get PDF
    In this dissertation a new class of spatial micromechanisms employing compliant joints and electrothermal motors has been developed. The spatial micromechanisms contain three limbs driven by individual electrothermal linear motors to form multiple degree-of-freedom (DOF) manipulators. At the coaxial point of the actuated limbs, a platform acts as the end effector of the device. Each limb in this spatial mechanism interconnects compliant pseudo-revolute joints, which are capable of providing either in-plane or out-of-plane rotations. Mechanisms are demonstrated using polysilicon surface micromachining, and a new four-layer UV-LIGA fabrication process is also presented for future production of high aspect ratio spatial micromechanisms. Linear motors are developed to provide bi-directional continuous motions to drive the spatial mechanism. Individual electrothermal actuators within a linear motor employ saw-toothed impactors to provide a synchronized locking/pushing motion without needing a secondary clamping actuator. These saw-toothed linear motors provide a platform for accurate open-loop position control, continuously smooth motion, high motion resolution, and long life operation. Electrothermal V-beam actuators using multiple arrayed beams have been shown to provide large output forces up to several mN, sufficient for the spatial micromechanisms developed in this work. Taking advantage of a modeling approach based on the pseudo-rigid-body model, a new force and displacement model for the electrothermal V-beam actuators is developed and shown to provide good agreement with experimental results. The optimization design for the thermal actuators is also discussed to reduce actuation power. Pseudo-rigid-body modeling is used to simplify the designed compliant spatial mechanisms, allowing the well-known rigid body method to replace the cumbersome matrix method for compliant mechanism analysis. Based on the pseudo-rigid-body model, inverse kinematics is used to find the workspace of a typical microscale mechanism, together with the required movement for each linear motor to allow the end effector to reach a desired position. Dynamic analysis of the mechanism is applied to determine the maximum required forces for each actuator. The manipulator workspace volume defined by maximum link lengths and joint rotation angles is determined by using the Monte Carlo method. A systematic design procedure is finally proposed to enable effective compliant micromanipulator designs
    corecore