762 research outputs found

    A review of high-solid anaerobic digestion (HSAD):From transport phenomena to process design

    Get PDF
    High-solid anaerobic digestion (HSAD) is an attractive organic waste disposal method for bioenergy recovery and climate change mitigation. The development of HSAD is facing several challenges such as low biogas and methane yields, low reaction rates, and ease of process inhibition due to low mass diffusion and mixing limitations of the process. Therefore, the recent progress in HSAD is critically reviewed with a focus on transport phenomena and process modelling. Specifically, the work discusses hydrodynamic phenomena, biokinetic mechanisms, HSAD-specific reactor simulations, state-of-the-art multi-stage reactor designs, industrial ramifications, and key parameters that enable sustained operation of HSAD processes. Further research on novel materials such as bio-additives, adsorbents, and surfactants can augment HSAD process efficiency, while ensuring the stability. Additionally, a generic simulation tool is of urgent need to enable a better coupling between biokinetic phenomena, hydrodynamics, and heat and mass transfer that would warrant HSAD process scale-up

    The Effect of Particle Size on Hydrolysis and Modeling of Anaerobic Digestion

    Get PDF
    Batch experiments were performed to investigate the effect of particulate protein particle size on the hydrolysis of casein in anaerobic degradation. While particle size did not affect the ultimate protein degradation efficiency, the hydrolysis rate coefficient increased from 0.034 to 0.298 d-1 with the change in specific surface area from 0.01 to 0.192 m2/g. The maximum methane production rate was affected by the particle size change, although the ultimate amount of methane produced was approximately the same despite the change in specific surface area. A mathematical relationship between the hydrolysis rate coefficient and specific surface area was developed and a new hydrolysis equation was proposed and verified. Ultrasound treatment of wastewater sludges prior to anaerobic digestion disrupts the flocs and causes lysis of the bacterial cells releasing both inter and intracellular materials. Primary (PS) and waste activated sludge (WAS) were treated with different ultrasonic intensities, varying sonication time and amplitude at a constant frequency. Results showed that gas production, volatile fatty acids, ratio of soluble chemical oxygen demand to total chemical oxygen demand and soluble protein increased, while particulate protein and particle size of the sludge decreased with sonication time. An empirical model was developed to determine the economic viability of ultrasound based on electrical energy input and energy obtained from enhanced methane production. Ultrasonic pretreatment is only economically viable for primary sludge at low sonication doses. The Anaerobic Digestion Model # 1 (ADM1) was applied to the batch anaerobic digestion for sonicated and non-sonicated sludge. The model successfully simulated the experimental trends. The efficiency of ultrasound as a pretreatment method for hog manure prior to anaerobic digestion was also evaluated at specific energies of 250 to 30,000 kJ/kg total solids (TS). This study confirmed that CODsolubilisation from particulates correlated well with the more labor and time intensive degree of disintegration test. The particle size distribution for hog manure was bimodal (0.6 - 2500 mu m), while ultrasound primarily impacting particles in the 0.6-60 mu m range. Hog manure is more amenable to ultrasound than waste activated sludge, as it took only 3000 kJ/kgTS to cause 15% more solubilization as compared to 25000 kJ/kg TS for waste activated sludge. Bound protein degradation during sonication was 13.5% at 5000 kJ/kg TS and remained constant thereafter for higher energy input. Biomass cell rupture occurred at specific energy of 500 kJ/kg TS. An economic evaluation indicated that only a specific energy of 500 kJ/kg TS was economical, with a net energy output valued at $ 4.1/ton of dry solids, due to a 28% increase in methane production. Degradation of odorous compounds in sludge during anaerobic digestion was systematically studied and simulated using the Anaerobic Digestion Model # 1 (ADM1). The degradation of various protein fractions (particulate, soluble and bound), VFAs, lipids and amino acids of PS and WAS were monitored during anaerobic digestion. Degradation kinetics of the odorous compounds namely, protein, amino acids, lipid and volatile fatty acids (VFAs) were determined. Relationships between protein fractions and volatile suspended solid were established. A strong relationship between bound protein, a major odors precursor, and volatile suspended solid degradation was found, while no statistically significant difference in bound protein reduction was observed between PS and WAS. ADM1 successfully simulated the lab scale continuous anaerobic digestion; model results with optimized parameters showed good agreement with the experimental data for methane production and all other sludge parameters including odor precursors such as lipids, VFAs and proteins

    Decision support methodology for sustainable smart energy systems integration

    Get PDF
    The global demand for energy is continuously increasing, and the carbon dioxide production related to the energy sector represents a large share of the overall anthropogenic greenhouse gas (GHG) emissions, since most of the energy needs are still provided by fossil fuels. To achieve the energy efficiency targets set by EU for the 2030 an energy transition towards more sustainable energy sources is required. The challenge will be the integration of different energy sectors in a smart energy system (SMES). Adopting a circular economy perspective it will be possible to turn the view on waste starting considering them as an energy source allowing more interactions between different stakeholders while exploiting technologies for the reduction of the environmental impact. This change in perspective needs also a change in the paradigm while taking decision on the implementation of this kind of interventions. The aim of this thesis is to fill the gaps in the development of decision support tools aiding the stakeholders in those interventions where SMES are implemented with developing and sustainable solutions

    Biofuels Production and Processing Technology

    Get PDF
    The negative impacts of global warming and global environmental pollution due to fossil fuels mean that the main challenge of modern society is finding alternatives to conventional fuels. In this scenario, biofuels derived from renewable biomass represent the most promising renewable energy sources. Depending on the biomass used by the fermentation technologies, it is possible to obtain first-generation biofuels produced from food crops, second-generation biofuels produced from non-food feedstock, mainly starting from renewable lignocellulosic biomasses, and third-generation biofuels, represented by algae or food waste biomass.Although biofuels appear to be the closest alternative to fossil fuels, it is necessary for them to be produced in competitive quantities and costs, requiring both improvements to production technologies and the diversification of feedstock. This Special Issue is focused on technological innovations, including the utilization of different feedstocks, with a particular focus on biethanol production from food waste; different biomass pretreatments; fermentation strategies, such as simultaneous saccharification and fermentation (SSF) or separate hydrolysis and fermentation (SHF); different applied microorganisms used as a monoculture or co-culture; and different setups for biofuel fermentation processes.The manuscripts collected represent a great opportunity for adding new knowledge to the scientific community as well as industry

    Biomass for Energy Country Specific Show Case Studies

    Get PDF
    In many domestic and industrial processes, vast percentages of primary energy are produced by the combustion of fossil fuels. Apart from diminishing the source of fossil fuels and the increasing risk of higher costs and energy security, the impact on the environment is worsening continually. Renewables are becoming very popular, but are, at present, more expensive than fossil fuels, especially photovoltaics and hydropower. Biomass is one of the most established and common sources of fuel known to mankind, and has been in continuous use for domestic heating and cooking over the years, especially in poorer communities. The use of biomass to produce electricity is interesting and is gaining ground. There are several ways to produce electricity from biomass. Steam and gas turbine technology is well established but requires temperatures in excess of 250 °C to work effectively. The organic Rankine cycle (ORC), where low-boiling-point organic solutions can be used to tailor the appropriate solution, is particularly successful for relatively low temperature heat sources, such as waste heat from coal, gas and biomass burners. Other relatively recent technologies have become more visible, such as the Stirling engine and thermo-electric generators are particularly useful for small power production. However, the uptake of renewables in general, and biomass in particular, is still considered somewhat risky due to the lack of best practice examples to demonstrate how efficient the technology is today. Hence, the call for this Special Issue, focusing on country files, so that different nations’ experiences can be shared and best practices can be published, is warranted. This is realistic, as it seems that some nations have different attitudes to biomass, perhaps due to resource availability, or the technology needed to utilize biomass. Therefore, I suggest that we go forward with this theme, and encourage scientists and engineers who are researching in this field to present case studies related to different countries. I certainly have one case study for the UK to present

    Enhancement of Biohydrogen and Biomethane Production from Wastes Using Ultrasonication

    Get PDF
    This thesis demonstrated the feasibility of using ultrasonication to solubilize the particulate matter, suppress the growth of methanogens, and enrich the biohydrogen producers, thus overcoming the main challenge of biohydrogen systems i.e. long-term stability and contamination with methanogens. Furthermore, this work emphasized the benefits of applying ultrasonication inside a bioreactor over using it as a pretreatment for biohydrogen and biomethane production from wastes. The results of this work showed that sonicating hog manure at specific energy (SE) of 500 kJ/kg TS resulted in a 20% increase in methane production and 36% increase in VSS destruction. The viability of using ultrasonication as a pretreatment method for elimination of methane producers and enrichment of hydrogen producers has been confirmed at SE of 79 kJ/g TSS. Moreover, hydrogen production in a novel sonicated biological hydrogen reactor (SBHR), which comprised a continuous stirred tank reactor (CSTR) connected with an ultrasonic probe at the bottom of the reactor, was about 85% higher than that in a conventional CSTR. On the other hand, an extensive comparative study of five different mesophilic systems (single and two-stage with and without sonicated feed, and two-stage; SBHR followed by methane reactor) was undertaken using food waste. The results showed that sonication inside the reactor in the first stage showed superior results compared to all other systems with respect to hydrogen production, methane production, and VSS destruction. The study also confirmed the advantages of two-stage mesophilic digestion of food wastes over single-stage systems, as reflected by VSS destruction efficiencies in the range of 51% - 59% versus 36% - 44% at a short SRT of 7 days

    Resource Recovery from Water

    Get PDF
    Throughout history, the first and foremost role of urban water management has been the protection of human health and the local aquatic environment. To this end, the practice of (waste-)water treatment has maintained a central focus on the removal of pollutants through dissipative pathways. Approaches like – in the case of wastewater treatment – the activated sludge process, which makes ‘hazardous things’ disappear, have benefitted our society tremendously by safeguarding human and environmental health. While conventional (waste-)water treatment is regarded as one of the greatest engineering achievements of the 20th century, these dissipative approaches will not suffice in the 21st century as we enter the era of the circular economy. A key challenge for the future of urban water management is the need to re-envision the role of water infrastructure, still holding paramount the safeguard of human and environmental health while also becoming a more proactive force for sustainable development through the recovery of resources embedded in urban water. This book aims (i) to explain the basic principles governing resource recovery from water (how much is there, really); (ii) to provide a comprehensive overview and critical assessment of the established and emerging technologies for resource recovery from water; and (iii) to put resource recovery from water in a legal, economic (including the economy of scale of recovered products), social (consumer's point of view), and environmental sustainability framework. This book serves as a powerful teaching tool at the graduate entry master level with an aim to help develop the next generation of engineers and experts and is also highly relevant for seasoned water professionals and practicing engineers

    Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective

    Get PDF
    Utilising ‘wastes’ as ‘resources’ is key to a circular economy. While there are multiple routes to waste valorisation, anaerobic digestion (AD)—a biochemical means to breakdown organic wastes in the absence of oxygen—is favoured due to its capacity to handle a variety of feedstocks. Traditional AD focuses on the production of biogas and fertiliser as products; however, such low-value products combined with longer residence times and slow kinetics have paved the way to explore alternative product platforms. The intermediate steps in conventional AD—acidogenesis and acetogenesis—have the capability to produce biohydrogen and volatile fatty acids (VFA) which are gaining increased attention due to the higher energy density (than biogas) and higher market value, respectively. This review hence focusses specifically on the production of biohydrogen and VFAs from organic wastes. With the revived interest in these products, a critical analysis of recent literature is needed to establish the current status. Therefore, intensification strategies in this area involving three main streams: substrate pre-treatment, digestion parameters and product recovery are discussed in detail based on literature reported in the last decade. The techno-economic aspects and future pointers are clearly highlighted to drive research forward in relevant areas

    Resource Recovery from Water

    Get PDF
    Throughout history, the first and foremost role of urban water management has been the protection of human health and the local aquatic environment. To this end, the practice of (waste-)water treatment has maintained a central focus on the removal of pollutants through dissipative pathways. Approaches like – in the case of wastewater treatment – the activated sludge process, which makes ‘hazardous things’ disappear, have benefitted our society tremendously by safeguarding human and environmental health. While conventional (waste-)water treatment is regarded as one of the greatest engineering achievements of the 20th century, these dissipative approaches will not suffice in the 21st century as we enter the era of the circular economy. A key challenge for the future of urban water management is the need to re-envision the role of water infrastructure, still holding paramount the safeguard of human and environmental health while also becoming a more proactive force for sustainable development through the recovery of resources embedded in urban water. This book aims (i) to explain the basic principles governing resource recovery from water (how much is there, really); (ii) to provide a comprehensive overview and critical assessment of the established and emerging technologies for resource recovery from water; and (iii) to put resource recovery from water in a legal, economic (including the economy of scale of recovered products), social (consumer's point of view), and environmental sustainability framework. This book serves as a powerful teaching tool at the graduate entry master level with an aim to help develop the next generation of engineers and experts and is also highly relevant for seasoned water professionals and practicing engineers
    • …
    corecore