46 research outputs found

    Modelling and investigation on bouncing mechanism of a sphere robot

    Get PDF
    Spherical rolling mechanisms (SRMs) exhibit a number of advantages with respect to wheeled and legged mechanisms. In fact if the SRM is combined with the power of bouncing mechanism, it will produce an exciting phenomena that can be contributed to applications such as security surveillance, search and rescue. There is not much research done in both fields, especially in the bouncing mechanism. In fact to the best of authors’ knowledge no of research has been done on integrating both mechanism to produce a spherical system that is capable of rolling and bouncing, which can produce a very significant mobile robot. Therefore, this research deals with the modeling and development of a bouncing spherical robot using computational intelligent technique, i.e. Particle Swarm Optimization technique (PSO). A 3D virtual prototype of a spherical robot was developed in Visual Nastran as a platform for input and out data acquisition. Different simulations environment have been created, such as the free fall bouncing, shooting up and projectile type of environment to investigate the bouncing profile affected by different forces. The data obtained were then used for system identification using PSO technique with mean square error (MSE) of 0.0004%. The transfer function representing the bouncing mechanism of the sphere robot was then obtained. Next, the prototype of the sphere robot with bouncing capability was developed. Open loop tests have been conducted and the results show that the hardware developed can produce the bouncing mechanism at its promising capability. Future works need to be conducted to re-visit the hardware, particularly on the body of the sphere robot such that maximum bouncing can be achieved

    RSG: Fast Learning Adaptive Skills for Quadruped Robots by Skill Graph

    Full text link
    Developing robotic intelligent systems that can adapt quickly to unseen wild situations is one of the critical challenges in pursuing autonomous robotics. Although some impressive progress has been made in walking stability and skill learning in the field of legged robots, their ability to fast adaptation is still inferior to that of animals in nature. Animals are born with massive skills needed to survive, and can quickly acquire new ones, by composing fundamental skills with limited experience. Inspired by this, we propose a novel framework, named Robot Skill Graph (RSG) for organizing massive fundamental skills of robots and dexterously reusing them for fast adaptation. Bearing a structure similar to the Knowledge Graph (KG), RSG is composed of massive dynamic behavioral skills instead of static knowledge in KG and enables discovering implicit relations that exist in be-tween of learning context and acquired skills of robots, serving as a starting point for understanding subtle patterns existing in robots' skill learning. Extensive experimental results demonstrate that RSG can provide rational skill inference upon new tasks and environments and enable quadruped robots to adapt to new scenarios and learn new skills rapidly

    Control of Locomotion with Shape-Changing Wheels

    Get PDF
    We present a novel approach to controlling the locomotion of a wheel by changing its shape, leading to applications to the synthesis and closed-loop control of gaits for modular robots. A dynamic model of a planar, continuous deformable ellipse in contact with a ground surface is derived. We present two alternative approaches to controlling this system and a method for mapping the gaits to a discrete rolling polygon. Mathematical models and dynamic simulation of the continuous approximation and the discrete n-body system, and experimental results obtained from a physical modular robot system illustrate the accuracy of the dynamic models and the validity of the approach

    Biorobotics: Using robots to emulate and investigate agile animal locomotion

    Get PDF
    The graceful and agile movements of animals are difficult to analyze and emulate because locomotion is the result of a complex interplay of many components: the central and peripheral nervous systems, the musculoskeletal system, and the environment. The goals of biorobotics are to take inspiration from biological principles to design robots that match the agility of animals, and to use robots as scientific tools to investigate animal adaptive behavior. Used as physical models, biorobots contribute to hypothesis testing in fields such as hydrodynamics, biomechanics, neuroscience, and prosthetics. Their use may contribute to the design of prosthetic devices that more closely take human locomotion principles into account

    Control of Bio-Inspired Sprawling Posture Quadruped Robots with an Actuated Spine

    Get PDF
    Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of salamanders or crocodiles. Although bio-inspired salamander-like robots with simple rotational limbs have been created, not much research has been done on kinematically redundant bio-mimetic robots that can closely replicate kinematics of sprawling animal gaits. Being bio-mimetic could allow a robot to have some of the locomotion skills observed in those animals, expanding its potential applications in challenging scenarios. At the same time, the robot could be used to answer questions about the animal's locomotion. This thesis is focused on developing locomotion controllers for such robots. Due to their high number of degrees of freedom (DoF), the control is based on solving the limb and spine inverse kinematics to properly coordinate different body parts. It is demonstrated how active use of a spine improves the robot's walking and turning performance. Further performance improvement across a variety of gaits is achieved by using model predictive control (MPC) methods to dictate the motion of the robot's center of mass (CoM). The locomotion controller is reused on an another robot (OroBOT) with similar morphology, designed to mimic the kinematics of a fossil belonging to Orobates, an extinct early tetrapod. Being capable of generating different gaits and quantitatively measuring their characteristics, OroBOT was used to find the most probable way the animal moved. This is useful because understanding locomotion of extinct vertebrates helps to conceptualize major transitions in their evolution. To tackle field applications, e.g. in disaster response missions, a new generation of field-oriented sprawling posture robots was built. The robustness of their initial crocodile-inspired design was tested in the animal's natural habitat (Uganda, Africa) and subsequently enhanced with additional sensors, cameras and computer. The improvements to the software framework involved a smartphone user interface visualizing the robot's state and camera feed to improve the ease of use for the operator. Using force sensors, the locomotion controller is expanded with a set of reflex control modules. It is demonstrated how these modules improve the robot's performance on rough and unstructured terrain. The robot's design and its low profile allow it to traverse low passages. To also tackle narrow passages like pipes, an unconventional crawling gait is explored. While using it, the robot lies on the ground and pushes against the pipe walls to move the body. To achieve such a task, several new control and estimation modules were developed. By exploring these problems, this thesis illustrates fruitful interactions that can take place between robotics, biology and paleontology

    Towards Agility: Definition, Benchmark and Design Considerations for Small, Quadrupedal Robots

    Get PDF
    Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common benchmark can be found. Further, it is unclear, what minimal level of mechatronic complexity is needed for this particular aspect of locomotion. In this thesis we address and partially answer two primary questions: (Q1) What is agile legged locomotion (agility) and how can wemeasure it? (Q2) How can wemake agile legged locomotion with a robot a reality? To answer our first question, we define agility for robot and animal alike, building a common ground for this particular component of locomotion and introduce quantitative measures to enhance robot evaluation and comparison. The definition is based on and inspired by features of agility observed in nature, sports, and suggested in robotics related publications. Using the results of this observational and literature review, we build a novel and extendable benchmark of thirteen different tasks that implement our vision of quantitatively classifying agility. All scores are calculated from simple measures, such as time, distance, angles and characteristic geometric values for robot scaling. We normalize all unit-less scores to reach comparability between different systems. An initial implementation with available robots and real agility-dogs as baseline finalize our effort of answering the first question. Bio-inspired designs introducing and benefiting from morphological aspects present in nature allowed the generation of fast, robust and energy efficient locomotion. We use engineering tools and interdisciplinary knowledge transferred from biology to build low-cost robots able to achieve a certain level of agility and as a result of this addressing our second question. This iterative process led to a series of robots from Lynx over Cheetah-Cub-S, Cheetah-Cub-AL, and Oncilla to Serval, a compliant robot with actuated spine, high range of motion in all joints. Serval presents a high level of mobility at medium speeds. With many successfully implemented skills, using a basic kinematics-duplication from dogs (copying the foot-trajectories of real animals and replaying themotion on the robot using a mathematical interpretation), we found strengths to emphasize, weaknesses to correct and made Serval ready for future attempts to achieve even more agile locomotion. We calculated Servalâs agility scores with the result of it performing better than any of its predecessors. Our small, safe and low-cost robot is able to execute up to 6 agility tasks out of 13 with the potential to reachmore after extended development. Concluding, we like to mention that Serval is able to cope with step-downs, smooth, bumpy terrain and falling orthogonally to the ground

    Pattern Generation for Rough Terrain Locomotion with Quadrupedal Robots:Morphed Oscillators & Sensory Feedback

    Get PDF
    Animals are able to locomote on rough terrain without any apparent difficulty, but this does not mean that the locomotor system is simple. The locomotor system is actually a complex multi-input multi-output closed-loop control system. This thesis is dedicated to the design of controllers for rough terrain locomotion, for animal-like quadrupedal robots. We choose the problem of blind rough terrain locomotion as the target of experiments. Blind rough terrain locomotion requires continuous and momentary corrections of leg movements and body posture, and provides a proper testbed to observe the interaction of different mod- ules involved in locomotion control. As for the specific case of this thesis, we have to design rough terrain locomotion controllers that do not depend on the torque-control capability, have limited sensing, and have to be computationally light, all due to the properties of the robotics platform that we use. We propose that a robust locomotion controller, taking into account the aforementioned constraints, is constructed from at least three modules: 1) pattern generators providing the nominal patterns of locomotion; 2) A posture controller continuously adjusting the attitude of the body and keeping the robot upright; and 3) quick reflexes to react to unwanted momentary events like stumbling or an external force impulse. We introduce the framework of morphed oscillators to systematize the design of pattern gen- erators realized as coupled nonlinear oscillators. Morphed oscillators are nonlinear oscillators that can encode arbitrary limit cycle shapes and simultaneously have infinitely large basins of attraction. More importantly, they provide dynamical systems that can assume the role of feedforward locomotion controllers known as Central Pattern Generators (CPGs), and accept discontinuous sensory feedback without the risk of producing discontinuous output. On top of the CPG module, we add a kinematic model-based posture controller inspired by virtual model control (VMC), to control the body attitude. Virtual model control produces forces, and through the application of the Jacobian transpose method, generates torques which are added to the CPG torques. However, because our robots do not have a torque- control capability, we adapt the posture controller by producing task-space velocities instead of forces, thus generating joint-space velocity feedback signals. Since the CPG model used for locomotion generates joint velocities and accepts feedback without the fear of instability or discontinuity, the posture control feedback is easily integrated into the CPG dynamics. More- over, we introduce feedback signals for adjusting the posture by shifting the trunk positions, which directly update the limit cycle shape of the morphed oscillator nodes of the CPG. Reflexes are added, with minimal complexity, to react to momentary events. We implement simple impulse-based feedback mechanisms inspired by animals and successful rough terrain robots to 1) flex the leg if the robot is stumbling (stumbling correction reflex); 2) extend the leg if an expected contact is missing (leg extension reflex); or 3) initiate a lateral stepping sequence in response to a lateral external perturbation. CPG, posture controller, and reflexes are put together in a modular control architecture alongside additional modules that estimate inclination, control speed and direction, maintain timing of feedback signals, etc. [...

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    The Evolution of Complexity in Autonomous Robots

    Get PDF
    Evolutionary robotics–the use of evolutionary algorithms to automate the production of autonomous robots–has been an active area of research for two decades. However, previous work in this domain has been limited by the simplicity of the evolved robots and the task environments within which they are able to succeed. This dissertation aims to address these challenges by developing techniques for evolving more complex robots. Particular focus is given to methods which evolve not only the control policies of manually-designed robots, but instead evolve both the control policy and physical form of the robot. These techniques are presented along with their application to investigating previously unexplored relationships between the complexity of evolving robots and the task environments within which they evolve
    corecore