5,939 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Augmented reality meeting table: a novel multi-user interface for architectural design

    Get PDF
    Immersive virtual environments have received widespread attention as providing possible replacements for the media and systems that designers traditionally use, as well as, more generally, in providing support for collaborative work. Relatively little attention has been given to date however to the problem of how to merge immersive virtual environments into real world work settings, and so to add to the media at the disposal of the designer and the design team, rather than to replace it. In this paper we report on a research project in which optical see-through augmented reality displays have been developed together with prototype decision support software for architectural and urban design. We suggest that a critical characteristic of multi user augmented reality is its ability to generate visualisations from a first person perspective in which the scale of rendition of the design model follows many of the conventions that designers are used to. Different scales of model appear to allow designers to focus on different aspects of the design under consideration. Augmenting the scene with simulations of pedestrian movement appears to assist both in scale recognition, and in moving from a first person to a third person understanding of the design. This research project is funded by the European Commission IST program (IST-2000-28559)

    RealitySketch: Embedding Responsive Graphics and Visualizations in AR through Dynamic Sketching

    Full text link
    We present RealitySketch, an augmented reality interface for sketching interactive graphics and visualizations. In recent years, an increasing number of AR sketching tools enable users to draw and embed sketches in the real world. However, with the current tools, sketched contents are inherently static, floating in mid air without responding to the real world. This paper introduces a new way to embed dynamic and responsive graphics in the real world. In RealitySketch, the user draws graphical elements on a mobile AR screen and binds them with physical objects in real-time and improvisational ways, so that the sketched elements dynamically move with the corresponding physical motion. The user can also quickly visualize and analyze real-world phenomena through responsive graph plots or interactive visualizations. This paper contributes to a set of interaction techniques that enable capturing, parameterizing, and visualizing real-world motion without pre-defined programs and configurations. Finally, we demonstrate our tool with several application scenarios, including physics education, sports training, and in-situ tangible interfaces.Comment: UIST 202

    A framework for the design, prototyping and evaluation of mobile interfaces for domestic environments

    Get PDF
    The idea of the smart home has been discussed for over three decades, but it has yet to achieve mass-market adoption. This thesis asks the question Why is my home not smart? It highlights four main areas that are barriers to adoption, and concentrates on a single one of these issues: usability. It presents an investigation that focuses on design, prototyping and evaluation of mobile interfaces for domestic environments resulting in the development of a novel framework. A smart home is the physical realisation of a ubiquitous computing system for domestic living. The research area offers numerous benefits to end-users such as convenience, assistive living, energy saving and improved security and safety. However, these benefits have yet to become accessible due to a lack of usable smart home control interfaces. This issue is considered a key reason for lack of adoption and is the focus for this thesis. Within this thesis, a framework is introduced as a novel approach for the design, prototyping and evaluation of mobile interfaces for domestic environments. Included within this framework are three components. Firstly, the Reconfigurable Multimedia Environment (RME), a physical evaluation and observation space for conducting user centred research. Secondly, Simulated Interactive Devices (SID), a video-based development and control tool for simulating interactive devices commonly found within a smart home. Thirdly, iProto, a tool that facilitates the production and rapid deployment of high fidelity prototypes for mobile touch screen devices. This framework is evaluated as a round-tripping toolchain for prototyping smart home control and found to be an efficient process for facilitating the design and evaluation of such interfaces
    • 

    corecore