3 research outputs found

    Simulation and Augmentation of Social Networks for Building Deep Learning Models

    Full text link
    A limitation of the Graph Convolutional Networks (GCNs) is that it assumes at a particular lthl^{th} layer of the neural network model only the lthl^{th} order neighbourhood nodes of a social network are influential. Furthermore, the GCN has been evaluated on citation and knowledge graphs, but not extensively on friendship-based social graphs. The drawback associated with the dependencies between layers and the order of node neighbourhood for the GCN can be more prevalent for friendship-based graphs. The evaluation of the full potential of the GCN on friendship-based social network requires openly available datasets in larger quantities. However, most available social network datasets are not complete. Also, the majority of the available social network datasets do not contain both the features and ground truth labels. In this work, firstly, we provide a guideline on simulating dynamic social networks, with ground truth labels and features, both coupled with the topology. Secondly, we introduce an open-source Python-based simulation library. We argue that the topology of the network is driven by a set of latent variables, termed as the social DNA (sDNA). We consider the sDNA as labels for the nodes. Finally, by evaluating on our simulated datasets, we propose four new variants of the GCN, mainly to overcome the limitation of dependency between the order of node-neighbourhood and a particular layer of the model. We then evaluate the performance of all the models and our results show that on 27 out of the 30 simulated datasets our proposed GCN variants outperform the original model

    Simulation and Augmentation of Social Networks for Building Deep Learning Models

    Get PDF
    A limitation of the Graph Convolutional Networks (GCNs) is that it assumes at a particular lthl^{th} layer of the neural network model only the lthl^{th} order neighbourhood nodes of a social network are influential. Furthermore, the GCN has been evaluated on citation and knowledge graphs, but not extensively on friendship-based social graphs. The drawback associated with the dependencies between layers and the order of node neighbourhood for the GCN can be more prevalent for friendship-based graphs. The evaluation of the full potential of the GCN on friendship-based social network requires openly available datasets in larger quantities. However, most available social network datasets are not complete. Also, the majority of the available social network datasets do not contain both the features and ground truth labels. In this work, firstly, we provide a guideline on simulating dynamic social networks, with ground truth labels and features, both coupled with the topology. Secondly, we introduce an open-source Python-based simulation library. We argue that the topology of the network is driven by a set of latent variables, termed as the social DNA (sDNA). We consider the sDNA as labels for the nodes. Finally, by evaluating on our simulated datasets, we propose four new variants of the GCN, mainly to overcome the limitation of dependency between the order of node-neighbourhood and a particular layer of the model. We then evaluate the performance of all the models and our results show that on 27 out of the 30 simulated datasets our proposed GCN variants outperform the original model

    Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey

    Full text link
    Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminologyComment: 28 pages, 9 figures, 8 table
    corecore