18 research outputs found

    Simulating Tail Probabilities in GI/GI.1 Queues and Insurance Risk Processes with Subexponentail Distributions

    Get PDF
    This paper deals with estimating small tail probabilities of thesteady-state waiting time in a GI/GI/1 queue with heavy-tailed (subexponential) service times. The problem of estimating infinite horizon ruin probabilities in insurance risk processes with heavy-tailed claims can be transformed into the same framework. It is well-known that naive simulation is ineffective for estimating small probabilities and special fast simulation techniques like importance sampling, multilevel splitting, etc., have to be used. Though there exists a vast amount of literature on the rare event simulation of queuing systems and networks with light-tailed distributions, previous fast simulation techniques for queues with subexponential service times have been confined to the M/GI/1 queue. The general approach is to use the Pollaczek-Khintchine transformation to convert the problem into that of estimating the tail distribution of a geometric sum of independent subexponential random variables. However, no such useful transformation exists when one goes from Poisson arrivals to general interarrival-time distributions. We describe and evaluate an approach that is based on directly simulating the random walk associated with the waiting-time process of the GI/GI/1 queue, using a change of measure called delayed subexponential twisting -an importance sampling idea recently developed and found useful in the context of M/GI/1 heavy-tailed simulations

    Computational methods for sums of random variables

    Get PDF

    Achieving Efficiency in Black Box Simulation of Distribution Tails with Self-structuring Importance Samplers

    Full text link
    Motivated by the increasing adoption of models which facilitate greater automation in risk management and decision-making, this paper presents a novel Importance Sampling (IS) scheme for measuring distribution tails of objectives modelled with enabling tools such as feature-based decision rules, mixed integer linear programs, deep neural networks, etc. Conventional efficient IS approaches suffer from feasibility and scalability concerns due to the need to intricately tailor the sampler to the underlying probability distribution and the objective. This challenge is overcome in the proposed black-box scheme by automating the selection of an effective IS distribution with a transformation that implicitly learns and replicates the concentration properties observed in less rare samples. This novel approach is guided by a large deviations principle that brings out the phenomenon of self-similarity of optimal IS distributions. The proposed sampler is the first to attain asymptotically optimal variance reduction across a spectrum of multivariate distributions despite being oblivious to the underlying structure. The large deviations principle additionally results in new distribution tail asymptotics capable of yielding operational insights. The applicability is illustrated by considering product distribution networks and portfolio credit risk models informed by neural networks as examples.Comment: 51 page

    Current Topics on Risk Analysis: ICRA6 and RISK2015 Conference

    Get PDF
    Peer ReviewedPostprint (published version
    corecore