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Preface
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while your attention to detail made me become ever more precise. Michel, thank you

for your constructive feedback and your support throughout the years. Your critical

questions taught me how to clearly communicate my thoughts and ideas. Aside from

research, you always showed an interest in my personal life and I look back on our

bike rides with joy. It has been a great pleasure to work with both of you.

Second, I thank my colleagues at the Faculty of Economics and Business of the

University of Amsterdam that I got to know over the past couple of years. There are

too many to name, so I hope that you, dear colleague reader, recognize the subset you

belong to and know that I am thankful for you and our encounters. First, a thank

you to all the full-time academic staff for the interesting seminars and lunches. I am

particularly grateful to Katrien and Umut, for being exemplary teachers and for the

very pleasant cooperation in teaching. Next, a big thank you to the secretariat, for

creating and facilitating a nice environment to work in. A special thanks goes to Lisa,

who has always supported me and actively helped with many endeavors. Finally, a

major thank you to all PhD candidates. During the lunches, seminars, and social

events, I had a great time getting to know you all. Special thanks are due to those

who helped me with my research, taking their time to attempt to solve yet another

mathematical problem that I encountered. A very special thanks goes to Evgenii, who

has been my academic brother throughout the years.
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Chapter 1

Introduction

This chapter serves as a motivation and a brief introduction to the model studied in

this thesis. Each subsequent chapter has its own introduction pertaining to the specific

problems studied in that chapter.

1.1 Modeling Stochastic Phenomena Using Point

Processes

Point processes are a class of stochastic models that are often applied to model events

that occur over time and space. They have proven to be a powerful tool to analyze

sequences of events in many fields of science, such as economics, epidemiology, seis-

mology, forestry, neuroscience, and many more. Typical examples of events include

earthquakes, financial crashes, and outbreaks of diseases. These models have the ca-

pacity and the flexibility to accurately describe how event sequences are generated in

all these different settings. Such a model allows one to calculate the likelihood of a

new event occurring, or the expected number and the associated variance of events to

occur within a certain time frame.

In a nutshell, point processes provide a probabilistic description of how (random)

sequences of events are generated. One key aspect of all point processes is that their

behavior can be completely characterized by their intensity. The intensity is strongly

related to the occurrence of new events, in that it describes in each time frame, what

the proportional likelihood is of a new event occurring in that specific time frame.

Intuitively, a large intensity will lead to the occurrence of more events on average,

while a small intensity will have fewer events on average. The intensity should be

higher when events occur in a somewhat regular fashion, such as the arrival of new

customers in a store, compared to a situation where events occur very rarely, such as

the occurrence of a large earthquake, where a very small intensity is appropriate. This

intensity can be a number, but it can also be a function, and even a random function.
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Chapter 1 Introduction

The prototypical example is the Poisson point process, whose intensity is a fixed

positive number. The rate at which new events occur is proportional to the intensity,

and because the intensity is in this case a fixed number, the sequences of events it

generates are similar for each time frame of equal size. If the sequences of events are

different in distinct time frames, but there is a structure to it, e.g. known busy periods

with many events, one can add time dependence in the intensity to accommodate for

that. This yields the slightly more complicated case of the Inhomogeneous Poisson

point process, whose intensity is a function of time. When the intensity changes over

time, it allows one to incorporate periods where events are more, or less, likely to occur

than others. If there is more complicated behavior inherent to the sequence of events,

one has to resort to more advanced methods, such as a random intensity function.

Depending on the type of behavior of events one is interested in modeling or ana-

lyzing, one has to carefully attend to the choice of parameters of the point process, in

the intensity as well as the dimensionality. Here, the dimensionality of the point pro-

cess simply means how many distinct sequences of events one considers. For instance,

when one is interested in the number of people infected with a virus in two different

cities, one could use a two-dimensional point process to model this. It need not be a

physical location such as a city however, it could be a more abstract location. One

could consider 10 stock exchanges around the world and use a 10-dimensional point

process to model event sequences in each stock exchange. This added dimensionality

makes point processes flexible and useful in modeling the occurrence of events that

have a spatial aspect.

1.2 Modeling Stochastic Phenomena Using Mutually

Exciting Point Processes

The general theory of point processes has been well-developed and the before-mentioned

considerations have, among other things, naturally led to the study of many different

sub-classes of point processes, each with its own characteristics and uses. One such

sub-class is that of mutually exciting point processes, which is studied in this thesis.

Mutually exciting point processes are also known as multivariate Hawkes processes,

named after the mathematician Alan Hawkes ([45, 46]), who first studied them in the

70s. More recently, there has been a resurgence of interest in these Hawkes processes,

exploring further theoretical properties, such as implications of parameter choices and

estimation methods, as well as finding practical applications in various contexts.

What makes mutually exciting point processes interesting, is the built-in feedback

system that makes events cluster in both time and space. This entails that events at

4



1.3 Main Contributions and Outline

a specific time and location can influence the occurrence of events in the future and

in other locations. The mechanism that describes the feedback is defined through the

intensity, which in this setting depends on the history of past events in a specific way.

Namely, the occurrence of an initial event in one location will increase, or excite, the

likelihood that new events occur in the future, both in the same location and in other

locations. The occurrence of a second event will in turn excite the likelihood of new

events occurring. This is where the term mutually exciting comes from, as events can

have mutual effects on each other.

This mutually exciting feedback system makes the sequences of events exhibit con-

tagious behavior, through the described temporal and spatial dependence. As a con-

sequence, the sequences of events are grouped in clusters that are highly complex and

intertwined, making them accordingly difficult to analyze. To analyze these clusters,

one can resort to an alternative and useful description of mutually exciting point pro-

cesses ([47]), the so-called branching representation. This is a tree-like structure that

describes how initial events are generated and how these create clusters of events over

time and across space.

1.3 Main Contributions and Outline

This thesis makes contributions to the class of mutually exciting point processes.

Chapter 2 of this thesis characterizes the distribution of sequences of events in a

general setting. In particular, it extends the mutually exciting point process to a

population process, which does not simply count the number of events over time as the

point process does, but in fact, allows for the number of events to decrease as well.

A practical example is e.g. in the field of epidemiology, with the population process

modeling the number of infected people.

By exploiting the branching representation in combination with the mutually ex-

citing feedback system, we obtain a full characterization of the distribution of the

sequences of events. This characterization is given in terms of a fixed-point representa-

tion of a suitably defined transform of both the mutually exciting population process

and the underlying intensity process. The generality of this result allows for a flexible

choice of parameters of the model, such as random marks, i.e. random jump sizes in

the intensity, as well as any decay function, i.e. the function that prescribes how the

intensity decays over time.

We also derive two asymptotic results, namely a convergence result of the trans-

forms, and the asymptotic tail behavior in the setting of heavy-tailed intensity jumps.

5



Chapter 1 Introduction

The convergence result relies on an iterative procedure based on the fixed-point rep-

resentation, which is computationally attractive as it is easy to implement. The

asymptotic tail behavior displays how a property such as heavy-tailed-ness propagates

throughout the locations. With the established results, one can compute mathemat-

ical objects of interest using numerical techniques, and we illustrate this with some

examples.

Chapter 3 considers the compound version of the mutually exciting point process.

This compound model consists of the sum of non-negative random variables, drawn for

each event of the mutually exciting point process. In the context of insurance, events

can trigger insurance claims, which are modeled as non-negative random variables,

that the insurance company has to pay out. With a compound model, an insurance

company can estimate the expected number of claims as well as their sizes at a certain

time in the future, which gives them an estimate of how much initial capital they

need to set aside to cover the costs. This is intimately related to the probability of

ruin, which is the probability that the insurance company goes insolvent by not having

enough initial capital to cover costs.

To investigate this, we derive a Large Deviations Principle, for the mutually exciting

point process as well as the compound model. This result requires us to prove a

property of a certain function called steepness, for which we partially exploit the

results of Chapter 2, namely the fixed-point representation. It turns out particularly

tricky and involved to prove this, due to the required multi-dimensional analysis. The

Large Deviations Principle gives an important tool to establish two further results.

First, we characterize the asymptotic properties of the probability of ruin, yielding

the asymptotic logarithmic decay rate. Second, we obtain a method to calculate

exceedance probabilities, which is the probability that the compound model exceeds a

given threshold.

Typically, the above-mentioned probabilities are very small, to such a degree that

it is infeasible to use standard Monte Carlo simulation methods to approximate them.

The problem is that extreme events, such as insolvency or exceeding a high thresh-

old, happen very irregularly (as they should!) according to the compound model. To

overcome this, we exponentially twist the compound model such that extreme events

become regular events, which allows us to apply simulation methods. We show that

the exponentially twisted compound model is again the compound version of another

mutually exciting point process, with different parameters. With this at hand, we use

importance sampling estimators to efficiently approximate the probabilities of ruin and

the exceedance probabilities. We prove that these estimators are in a sense optimal.

6



1.3 Main Contributions and Outline

Chapter 4 focuses on the more narrow class of Markovian mutually exciting point

processes. By choosing the intensity decay functions to be of exponential type, the

process obtains the Markov property, yielding a powerful tool to analyze the process.

In practical settings where one has quick and sudden outbursts of sequences of events,

which also fade out quickly, choosing exponential type decay is particularly suitable.

As in Chapter 2, we consider the population process. Using the Markov property, we

are able to characterize more explicitly the joint behavior of the population process and

the underlying intensity, given in terms of a system of ordinary differential equations.

Moreover, we show that this characterization holds when one conditions on different

initial values and when one considers multiple points in time. This opens the door to

numerically computing any combination of moments of the model.

Moreover, from this more explicit characterization, we reveal a recursive and nested

structure hidden within the moments. This method yields explicit expressions of

moments up to arbitrary order and brings important computational advantages. We

show the superiority of our method in terms of accuracy and speed compared to

conventional methods of obtaining moments, such as Monte Carlo simulation and

finite difference schemes.

7
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Abstract

This paper studies multivariate population processes in which multivariate Hawkes processes 
dictate the stochastic arrivals. We establish results to determine their time-dependent joint 
probability distributions allowing for general arrival intensity decay functions possibly inducing 
non-Markovianity, general intensity jump distributions, and general sojourn time distributions. 
We obtain an exact, full characterization of the time-dependent joint transform of the 
population process and its underlying intensity process in terms of a fixed-point representation 
and corresponding convergence results. We also derive the asymptotic tail behavior of the 
population process and its underlying intensity process in the setting of heavy-tailed intensity 
jumps. By exploiting the results we establish, arbitrary joint spatial-temporal moments 
and other distributional properties can now be readily evaluated using standard transform 
differentiation and inversion techniques, and we illustrate this in a few examples.

Chapter 2 
Exact and Asymptotic Analysis of 

Multivariate Hawkes Population Processes





Chapter 2

Exact and Asymptotic Analysis of

Multivariate Hawkes Population

Processes

2.1 Introduction

As the world grows more interconnected, event shocks tend to spread and cluster more

easily and more forcefully. Prototypical examples include the contagious spread of dis-

eases across populations, financial contagion across equity or credit markets, and cyber

infections across technological networks. The amplification of event shocks over time

and in space, that is, across populations, markets and networks, arguably constitutes

one of the core challenges to modern risk measurement and risk management.

In principle, multivariate point processes can provide a probabilistic description

of the occurrence of events, and their stochastic dependencies, in time and space.

Among multivariate point processes, the class of Hawkes processes ([45]), or mutually

exciting processes, provides a natural contender for modeling contagious phenomena.

Different from multivariate Poisson, or more generally Lévy, processes, they allow for

clustering to occur not just in the spatial (i.e., cross-sectional) dimension, but also

in the temporal (i.e., time-series) dimension. Originally introduced to stochastically

describe epidemics and earthquake occurrences, Hawkes processes have seen increased

interest over the past few years, in finance ([2, 3, 7, 33, 48]), social interaction ([17, 66]),

neuroscience and genome analysis ([13, 65]), and so on.

Analyzing distributional properties of multivariate Hawkes, and related, processes

is, however, challenging. The existing literature often focuses on the special case of

exponential excitation functions under which the Hawkes process (more precisely, the

vector consisting of the counting process and its intensity process jointly) can be shown

to be Markovian ([2, 3, 24, 26, 28, 33, 45, 62]), or on other specific cases or asymptotic
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Chapter 2 Multivariate Hawkes Population Processes

regimes (discussed below in more detail). The importance of non-Markovian models

in describing contagious phenomena was emphasized recently in [35, 59].

In this paper, we establish exact and asymptotic results on distributional properties

of general—in our context, not necessarily Markovian—multivariate Hawkes processes

and induced population processes, with widespread use across various applications. In

a series of exact results, we obtain a full characterization of the joint transform of the

multivariate population process and its underlying arrival intensity process, in terms of

a fixed-point representation and corresponding convergence results. These results allow

for general intensity decay functions, general intensity jump distributions, and general

sojourn time distributions. From these results, arbitrary joint moments, including

auto- and cross-covariances, and other distributional properties such as joint event

probabilities, can be readily obtained using standard transform differentiation and

inversion techniques. This paves the way to important applications such as moment-

based statistical inference and multivariate risk measurement.

Our exact results exploit a cluster process representation of the Hawkes process,

for the univariate self-exciting process first described in [47]; see also [23]. The cross-

excitation phenomenon that is present in multivariate Hawkes processes significantly

complicates the situation compared to the univariate setting where only self-excitation

is present. More specifically, cross-excitation leads to clusters with branches (i.e.,

offspring) in the time-series as well as in the cross-sectional dimensions, generating

complex intertwined clusters. Our analysis of a d-dimensional population process

whose arrivals are described by a general multivariate Hawkes process and whose

departures admit general sojourn time distributions, yields a fixed-point theorem that

characterizes the joint transform of the respective processes at, potentially multiple,

future time points, involving suitably defined d×d-dimensional objects to represent the

full range of cross-sectional and time-series dependencies. We establish convergence

of successive iterations of the fixed-point mapping, thus obtaining the joint transform

uniquely.

In a series of asymptotic results, we characterize the tail behavior of our popula-

tion process and the underlying intensity process in a setting of heavy-tailed intensity

jumps. These results pertain directly to the respective probability distributions and

enable us to derive associated tail probabilities. We also establish several class prop-

erties, and irreducibility results, using the nomenclature of Markov chains.

When analyzing the asymptotic tail behavior in our general multivariate setting,

one might naively conjecture that the heaviest tail among the tails of the distribu-

tions of intensity jumps that excite component i ‘dominates’, and therefore dictates

the tail behavior of component i. Our asymptotic results reveal that this is not nec-

essarily true as, due to the cross-excitation phenomenon, heavy-tailed intensity jumps

12



2.1 Introduction

originating in different components may propagate to component i indirectly, through

other components in the system with lighter-tailed intensity jumps. From the full

representation of the mutually exciting behavior within the system as provided by our

fixed-point theorem, along with suitable Tauberian theorems ([10]), we derive a sys-

tem of vector-valued renewal equations that jointly characterize the asymptotic tail

behavior of our population process and the underlying intensity process. Both our

exact and asymptotic results are directly amenable to numerical evaluation and we

illustrate our results in a collection of numerical examples.

This paper relates to several branches in the existing literature, which we categorize

along three dimensions. First, a starting point for our analysis is provided by the gen-

eralized branching structure that underlies a Poissonian cluster process representation

of multivariate Hawkes processes. In the univariate self-exciting setting, this branching

structure was first discussed in [47]; see also e.g., the formal and extensive treatment

in [23] and [60, Chapter 4]. We use a cluster process representation for the complex

intertwined spatial-temporal structure of general multivariate Hawkes processes and

induced population processes to obtain suitable general and micro-level distributional

equalities for our population process and its underlying intensity process, which we

next exploit to characterize the joint transform.

Second, transform analysis and the derivation of transient and stationary moments

for Hawkes processes has received considerable attention in the literature, especially

under Markovian assumptions. In a univariate Markov setting, [24, 21] characterize

the joint transform of the point process and the underlying intensity process by relying

on the infinitesimal Markov generator, yielding systems of ODEs for the moments of

both processes; see also [26, 28, 57] and the recent closed-form expressions in [29]. In

addition, [57] and [38] consider the case of non-exponential decay for the probability

generating function of the univariate point process and its joint Laplace transform, re-

spectively; see also the distinct elementary approach in [18]. In a multivariate Markov

setting, and more generally in the context of (Markovian) affine point processes, [30]

provide semi-analytic expressions of conditional characteristic functions, involving so-

lutions to systems of ODEs; see also [3, 33]. Closed-form expressions of stationary

moments as Taylor series approximations over short time intervals in a multivariate

Markov setting are derived in [2] by exploiting operator methods. Furthermore, [31]

derive an integral equation for the characteristic function of the multivariate point pro-

cess allowing for non-exponential decay, as an intermediate step to a fractional stochas-

tic volatility model. We characterize the joint transform for, possibly non-Markovian,

multivariate Hawkes processes and induced population processes, at possibly multiple

time points, through a fixed-point representation and corresponding convergence re-

sults, allowing for general decay functions, general distributions of the intensity jump

13



Chapter 2 Multivariate Hawkes Population Processes

sizes, and general distributions of the sojourn times. We are not aware of other work

on exact transform and moment characterizations for Hawkes processes that allows for

a comparable degree of generality along all these dimensions.

Third, asymptotic results such as LLNs and FCLTs for multivariate Hawkes pro-

cesses have been established in e.g., [6, 39]. Furthermore, the nearly unstable situation

is analyzed in [52] and the setting of a large initial intensity is considered in [41]. Large

and precise deviation results are obtained in e.g., [11, 43] for large times and general

univariate Hawkes processes and in [40] for a large initial intensity in the Markov

case. These large and precise deviation results are obtained in a setting of light-tailed

counting and intensity processes. By contrast, we study the asymptotic tail behavior

of the general population process and its underlying intensity process in the setting of

heavy-tailed intensity jumps.

We finally note that the population process analyzed in this paper may be natu-

rally interpreted and applied in the—now highly relevant—context of epidemiological

modeling. It provides an appealing probabilistic description of the contagious amplifi-

cation of viruses among populations across the globe. Recent work that uses Hawkes

processes, potentially in conjunction with SIR-models, to stochastically describe pan-

demics such as COVID-19 includes [14, 16].

The remainder of this paper is organized as follows. In Section 2.2, we define the

multivariate Hawkes process and induced population process, discuss some of their

properties, and describe the cluster representation. In Section 2.3, we exploit the

branching structure to obtain distributional equalities, which we use to characterize

the joint transform of the processes under consideration. In Section 2.4, we represent

the joint transform as the fixed point of a certain mapping and establish corresponding

convergence results. In Section 2.5, we derive the asymptotic tail behavior. Section 2.6

contains our numerical illustrations. Conclusions are in Section 2.7. The proofs of some

auxiliary results are relegated to the Appendix.

2.2 Model and Underlying Branching Structure

In this section, we provide a formal definition and a cluster process representation

of multivariate Hawkes processes and induced population processes, and discuss their

properties and branching structure. Throughout this paper, we adopt the notation

x = (x1, . . . , xd)
⊤, d ∈ N and R+ = {t ∈ R : t ⩾ 0}.
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2.2 Model and Underlying Branching Structure

2.2.1 Definition and properties

Multivariate Hawkes processes constitute a class of multivariate point processes. We

denote a d-dimensional càdlàg point process by N (·) ≡ (N (t))t∈R+ , where each Nj(t)

records the number of points in component j ∈ [d] := {1, . . . , d} in the time interval

(0, t].

For each j ∈ [d], consider an a.s. increasing sequence of positive random variables

Tj = {Tj,r}r∈N = {Tj,1, Tj,2, . . . }. To this sequence we associate Nj(·) by setting

Nj(t) := NTj
(0, t] =

∑∞
r=1 1{Tj,r≤t}. That is, the process N (·) = (N1(·), . . . , Nd(·))⊤ is

the d-dimensional counting process associated to the sequences T1, . . . ,Td, compactly

denoted by N (t) = NT (0, t]. The points will be referred to as events and the Tj,r’s

will be interpreted as the event times of the r-th event in component j. We assume

N (0) = 0 throughout this paper. We use the terms point and counting process

interchangeably for N (·).
As is well-known, a point process can be characterized by its conditional intensity

λ(·). The i-th component of λ(t), i ∈ [d] and t > 0, is given by

λi(t) = lim
h↓0

E
[
Ni(t+ h)−Ni(t) | Ft−

]
h

, (2.1)

where Ft− = σ(N (s) : s < t) is the sigma algebra of events up to, but not including,

time t. We refer to λ(·) simply as the intensity, where it is noted that it may itself be

a stochastic process. Clearly, λ(·) is predictable; see e.g., [23, Chapter 7] for further

details.

Definition 2.1. A multivariate Hawkes process ([45]) is a point process N (·) whose
components Ni(·), for i ∈ [d], satisfy

P(Ni(t+∆)−Ni(t) = 0 | Ft) = 1− λi(t)∆ + o(∆),

P(Ni(t+∆)−Ni(t) = 1 | Ft) = λi(t)∆ + o(∆),

P(Ni(t+∆)−Ni(t) > 1 | Ft) = o(∆),

(2.2)

as ∆ ↓ 0, with N (0) = 0. Here, Ft = σ(N (s) : s ⩽ t) is the natural filtration generated

by N (·). With λi > 0 and gij(·) non-negative integrable functions, the intensity λi(·)
takes the form

λi(t) = λi +
d∑

j=1

∫ t

0

Bij(s) gij(t− s) dNj(s), (2.3)

where, for each i, j ∈ [d], the (Bij(s))0<s<t constitutes a sequence of cross-sectionally

and serially independently distributed random variables that are distributed as the
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Chapter 2 Multivariate Hawkes Population Processes

generic non-negative random variable Bij. The integral in (2.3) is understood as
∫
(0,t)

,

excluding t.

Informally, the definition above is understood as follows. The constant λi represents

the base rate corresponding to component i. An event generated byNj(·) in component

j leads to a jump in the intensity λi(·) of component i, with i, j ∈ [d]; its size is

distributed as the random variable Bij. After the occurrence of this event, the decay

functions gij(·) govern the path of the intensity λi(·) back to the base rate λi. The base

rates can, in principle, be allowed to be time-varying, and take the value zero for a

strict subset of [d], at the expense of additional notation in the results that follow. The

multivariate Hawkes process N (·) is also known as a mutually exciting point process.

When an event in component i impacts the intensity of component i, we speak of

self-excitation—a purely temporal effect. When an event in component j impacts the

intensity of component i, with i ̸= j, we speak of cross-excitation—a temporal as well

as spatial effect. Mutually exciting point processes accommodate both effects.

One may introduce functions hij(·) = Bij gij(·), where the Bij is understood to

be sampled at every event in Nj(·) in the manner described in Definition 2.1. These

hij(·), frequently called excitation or impact functions (see e.g., [45, 60]), couple the

jump size and the decay function in a multiplicative manner. We can thus compactly

rewrite (2.3) in vector notation by setting

λ(t) = λ+

∫ t

0

H(t− s) dN (s), (2.4)

where H(·) = (hij(·))i,j∈[d]. The matrix form H(·) in (2.4), where for each j ∈ [d] we

define the random vectorHj(·) = (h1j(·), . . . , hdj(·))⊤, justifies the indexing convention
of hij(·): hij(·) describes the impact of events in source component j on the intensity

λi(t) of target component i.

Whereas N (·) is right-continuous, the Hawkes intensity λ(·) is left-continuous. Ex-
istence, uniqueness and positivity of λi(t) is guaranteed if gij(·) satisfies the conditions
in Definition 2.1 and Bij < ∞ with probability one; see e.g., [23, Example 7.2(b)].

To guarantee stability of the Hawkes process, [45] shows that an additional condition

must be imposed; in the current setting, this condition takes the following form:

Assumption 2.1 (Stability condition). Assume that the matrix ∥H∥ = (∥hij∥)i,j∈[d]
with

∥hij∥ = E[Bij] · ∥gij∥L1(R+) = E[Bij]

∫ ∞
0

gij(t)dt,

satisfies ρ(∥H∥) < 1, where ρ(·) denotes the spectral radius.
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2.2 Model and Underlying Branching Structure

In the sequel, we assume the stability condition applies. We emphasize that the

Hawkes process in our definition has empty history on the interval (−∞, 0] by setting

N (0) = 0, which implies that there are no events prior to t = 0. In [23, Example

12.5(c)] it is shown that, under Assumption 2.1, N (·) converges weakly to the sta-

tionary version N †(·) defined on R with complete intensity λ†(·), which implies that

N (·) satisfies weak asymptotic stationarity. Furthermore, as shown in [45], under

Assumption 2.1, the entries of the expected stationary intensity vector are the con-

stants λi := E[λ†i (t)] = E[dN †i (t)]/dt and, due to the weak asymptotic stationarity, we

have E[λi(t)] → λi as t → ∞. In vector form these intensities can be expressed as

λ = (I − ∥H∥)−1λ.
We note that the random vectors Bj = (B1j, . . . , Bdj)

⊤ can be considered as marks

associated to an event in component j ∈ [d]; see [23, Chapter 6.4]. More precisely,

for each j ∈ [d], {(Tj,r,Bj,r)}r∈N with Bj,r ∼ Bj constitutes the j-th component of a

multivariate marked Hawkes process. In other words, Eqn. (2.3) can be rewritten as

λi(t) = λi +
d∑

j=1

∑
Tj,r<t

Bij,rgij(t− Tj,r). (2.5)

Note that in the special case that Bij ≡ 0 for all i, j ∈ [d], λi(·) ≡ λi such that N (·)
reduces to a d-dimensional homogeneous Poisson process with rate λ.

While the methodology developed in this work applies to general non-negative in-

tegrable functions gij(·), a parameterization of special interest is that of exponential

decay.

Example 2.1 (Exponential). Let the decay functions gij(·) be of exponential form

gij(t) = e−αit, for some αi > 0 known as the decay rate. Eqn. (2.3) is in this case

given by

λi(t) = λi +
d∑

j=1

∫ t

0

Bij(s)e
−αi(t−s)dNj(s), (2.6)

and can, by Itô’s Lemma, alternatively be expressed in SDE notation as

dλi(t) = αi(λi − λi(t))dt+
d∑

j=1

Bij(t) dNj(t). (2.7)

A distinctive property of exponential decay is that the joint process (N (·),λ(·)) con-

stitutes a Markov process; see [60, 62].

The Markov property yields a number of useful tools to analyze distributional prop-

erties of the Hawkes process in the case that gij(·) is of exponential form. The explicit
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treatment in [2] relies on operator methods applied to the Markov infinitesimal gener-

ator. In [21, 24], the Markov infinitesimal generator is used to characterize the condi-

tional joint transform of (N(·), λ(·)) as the solution to a system of ODEs; see also [30].

A similar characterization is given in [57], which exploits the Markov property directly.

Departing from exponential decay renders the Hawkes process to be non-Markov in

general. An important example, extensively used to model e.g., the temporal cluster-

ing of earthquake occurrences, is the power-law parameterization proposed in [64]; see

also the recent [49] and the references therein.

Example 2.2 (Power). Consider the decay functions gij(·) to be of power-law type

by setting gij(t) = 1/(cij + t)pij for some cij ∈ R+ and pij > 1. Note that pij > 1

ensures integrability. In this case, by Eqn. (2.3),

λi(t) = λi +
d∑

j=1

∫ t

0

Bij(s)

(cij + t− s)pij
dNj(s). (2.8)

Analyzing distributional properties of the Hawkes process with power-law decay is

considerably more complex than under exponential decay, due to the system being

non-Markovian. From an applications point of view, the power-law type and related

parameterizations are of significant interest, as they enable to model multivariate

dynamic behavior that exhibits long-memory properties across time and space.

The Hawkes process can be used in conjunction with other models, such as (affine)

jump-diffusion models [2, 33] or epidemiological models [14, 16]. In this paper, we

consider a model that also allows for departures. Considering the events generated by

N (·) as arrivals, we introduce the Hawkes population process Q(·) by setting for t > 0,

Qi(t) :=

∫ t

0

1{Ei(s)>t−s}dNi(s), (2.9)

where (Ei(s))0<s≤t is a sequence of i.i.d. random variables, also independent of N (·),
representing sojourn times and distributed as the generic non-negative random variable

Ei, and where the integral is understood as
∫
(0,t]

, including t. Hence,

Di(t) := Ni(t)−Qi(t) (2.10)

can be interpreted as the process that counts the number of departures in component

i ∈ [d] up to, and including, time t. Of course, if Ei ≡ ∞ for all i ∈ [d], then

Q(·) = N (·), and hence D(·) ≡ 0.

Two canonical examples of population processes occur in demography and epi-

demiology. First, suppose Qi(·) represents the number of (living or active) people in
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population i ∈ [d] and Di(·) the number of deaths. Assuming the individual lifetimes

Ei to be exponentially distributed with mean µ−1i for some µi ⩾ 0, the process Di(·)
is an inhomogeneous Poisson process with rate µiQi(t); cf. [4]. Second, Qi(·) may

represent the number of infected people in geographic location i ∈ [d] and Di(·) the

recovery process.

2.2.2 Cluster representation and branching structure

The Hawkes process admits an alternative definition as a Poisson cluster process, which

will play a pivotal role in our analysis. This so-called cluster process representation

is first described in [47] in the setting of the conventional single-dimensional Hawkes

process; see also [23, Example 6.3(c)] and [60, Ch. IV]. It essentially consists of im-

migrants generated from the base rates and clusters of offspring generated from rates

that account for self- and cross-excitation. In our multivariate setting, the cluster

process representation can be described as follows.

Definition 2.2 (Cluster process representation). Define a d-dimensional count-

ing process N (·) componentwise by Nj(t) = NTj
(0, t] for j ∈ [d] and t > 0, with the

sequences of event times T1, . . . ,Td generated according to the following procedure:

(1) For each j ∈ [d], consider a sequence of immigrant event times {T (0)
j,r }r∈N taking

values in R+, generated by a homogeneous Poisson process Ij(·) with rate λj.

(2) Next, each immigrant event independently generates a d-dimensional cluster

Cj ≡ C
T

(0)
j,r

⊆ Rd
+, which consists of event times associated with generations

of events:

(a) The immigrant with event time T
(0)
j,r , considered to be of generation 0, gen-

erates into each component m ∈ [d] a sequence of first-generation event

times {T (1)
m,r}r∈N taking values in (T

(0)
j,r ,∞), according to Kmj(·−T

(0)
j,r ), with

Kmj(·) a non-homogeneous Poisson process with rate Bmj,rgmj(·), where

Bmj,r is the jump size associated to T
(0)
j,r .

(b) Upon iterating (a) above, with T
(n−1)
m,r denoting the r-th event time of gen-

eration n − 1 in component m ∈ [d], we obtain generation n event times

{T (n)
l,r }r∈N in component l ∈ [d] on the interval (T

(n−1)
m,r ,∞), drawn according

to Klm(· − T
(n−1)
m,r ).

By taking the union over all generations, we obtain for each component j ∈ [d],

Tj = {Tj,r}r∈N =
∞⋃
n=0

{T (n)
j,r }r∈N.
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The process N (·) thus defined for t > 0 and with N (0) = 0, constitutes a multivariate

Hawkes process equivalent to that in Definition 2.1.

The cluster process representation in Definition 2.2 agrees with the intensity-based

Definition 2.1 (provided the stability condition is satisfied), as shown in [47, 23]. (The

stability condition corresponds to the sub-criticality condition in the context of branch-

ing processes.) The proof in [47] amounts to comparing the cluster process represen-

tation to an age-dependent birth-death process allowing for immigration, and where

the death process is set to zero. Hence, we can naturally extend the cluster process

representation to our population process Q(·), by including departures seen as a death

process.

The richness, and complexity, of the cluster representation is apparent from the

cluster processes that each immigrant event generates. Consider immigrant event

time T
(0)
j,r and, henceforth, set u = t − T

(0)
j,r as the remaining time after the arrival of

the immigrant event. We associate to the d-dimensional cluster Cj ≡ C
T

(0)
j,r

the cluster

point process SN
j (·), by setting

SN
j (u) ≡ SN

Cj
(0, u] ⊆ Nd, (2.11)

which counts the number of events in Cj on the interval (0, u]. More explicitly, we

have

SN
j (u) :=

S
N
1←j(u)
...

SN
d←j(u)

 , (2.12)

where each entry SN
i←j(u) records the number of events in the cluster generated into

component i ∈ [d] with as oldest ancestor the immigrant with event time T
(0)
j,r . The

immigrant with event time T
(0)
j,r is itself included in the cluster point process (only)

when i = j, to avoid double counts. Note that due to our multivariate setting, events

recorded in SN
i←j(·) may have propagated through other dimensions m ∈ [d] before

arriving in i. Jointly, SN
j (u) meticulously keeps track of the components of descendant

events and whether their event times are in (T
(0)
j,r , t].

Three basic distributional properties, which we will later exploit to operationalize

the cluster representation, are noteworthy. First, each immigrant event from source

component j ∈ [d] generates a cluster according to the same distribution modulo a

time shift to account for the arrival time; see also [23, Section 6.3]. Hence, we index

the cluster process SN
j (·) by the source component it corresponds to, not by individual

immigrant. Second, each event from the same source component generates offspring
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according to the same iterative procedure and, as such, there is a branching structure,

and self-similarity, underlying each cluster. Third, we emphasize that the clusters are

generated independently of each other.

Our analysis will exploit the branching structure that underlies the cluster rep-

resentation for all three processes N (·), Q(·) and λ(·) to characterize distributional

properties of the processes jointly. To explicitly describe their dynamics, we introduce

the following two cluster processes, resembling the cluster process SN
j (·) in (2.11).

Denote the Nd-valued cluster process SQ
j (·) and the Rd

+-valued cluster process Sλ
j (·),

corresponding to Q(·) and λ(·), at time u by

SQ
j (u) :=

S
Q
1←j(u)
...

SQ
d←j(u)

 , Sλ
j (u) :=

S
λ
1←j(u)
...

Sλ
d←j(u)

 . (2.13)

These cluster processes are defined for each entry i ∈ [d] by

SQ
i←j(u) =

∫ u

0

1{Ei(s)>u−s}dS
N
i←j(s), (2.14)

and

Sλ
i←j(u) =

d∑
m=1

∫ u

0

Bim(s)gim(u− s)dSN
m←j(s). (2.15)

That is, SQ
i←j(·) and Sλ

i←j(·) are defined as the cluster-level analogues of the processes

Qi(·) and λi(·) in Eqns. (2.9) and (2.3), respectively. The integrals in (2.14) and (2.15)

are understood as in their counterparts (2.9) and (2.3).

Remark 2.1. Most of the results in this paper pertain to the joint process (Q(·),λ(·)),
which includes (N (·),λ(·)) as a special case when Ei ≡ ∞ for all i ∈ [d]. We remark

that it is possible to extend our results to cover the joint process (N (·),Q(·),λ(·)) at

the cost of heavier notation.

2.3 Joint Transforms

In this section, by exploiting the branching structure underlying the cluster process

representation, we first derive a collection of distributional equalities that play a key

role in next characterizing a general joint transform of the random object (Q(t),λ(t))

in terms of a semi-closed-form expression. The generality of this characterization also

allows us to obtain, as corollaries in specific cases, several additional new transform

results that are of independent interest.
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2.3.1 Analyzing distributional equalities

First, to illustrate how the cluster processes behave, Figure 2.1 displays a realization

of the paths of N (·) and λ(·) with corresponding cluster processes SN
j (·) and Sλ

j (·) in
the bivariate case d = 2. In the first two subplots, the dotted arrows between events

(crosses and diamonds) in N (·) indicate how events are generated across time and

components, revealing the branching structure of the cluster processes. The last four

subplots display the cluster processes SN
i←j(·) and Sλ

i←j(·), for i, j = 1, 2, so as to make

visible how they relate to the processes Ni(·) and λi(·).
As the visualization in Figure 2.1 suggests, the cluster processes in (2.12) and (2.13)

are formally connected to the processes Ni(·), Qi(·) and λi(·) via a set of distributional

equalities. More precisely, the equivalence between the cluster process representation

in Definition 2.2 and the intensity-based Definition 2.1 allows us to probabilistically

describe events, and their impact on Ni(·), Qi(·) and λi(·), in terms of the cluster

processes. Indeed, for given t ∈ R+,

Ni(t)
d
=

d∑
j=1

Ij(t)∑
r=1

SN
i←j(t− T

(0)
j,r ),

Qi(t)
d
=

d∑
j=1

Ij(t)∑
r=1

SQ
i←j(t− T

(0)
j,r ),

λi(t)
d
= λi +

d∑
j=1

Ij(t)∑
r=1

Sλ
i←j(t− T

(0)
j,r ),

(2.16)

where T
(0)
j,r are the immigrant events times and Ij(·) is as in Definition 2.2. The

distributional equality concerning λi(t) may be compared to Eqn. (2.5), where we

expressed λi(t) as the pathwise aggregated change in intensity due to all events strictly

prior to time t.

We now fix an immigrant with event time T
(0)
j,r in source component j ∈ [d] and

analyze the generated clusters S⋆
j (·), where ⋆ ∈ {N ,Q,λ}. To exploit the underly-

ing branching structure, and the self-similarity, the idea consists in recognizing that

this immigrant event generates first-generation events into all m components, and

these in turn generate their own sub-clusters S⋆
m(·). In order to formally capture this

mechanism, we define the matrix processes SN (·), SQ(·) and Sλ(·) by

S⋆(·) :=
[
S⋆

1(·) | · · · | S⋆
d(·)
]
=

S
⋆
1←1(·) · · · S⋆

1←d(·)
...

. . .
...

S⋆
d←1(·) · · · S⋆

d←d(·)

 , (2.17)
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Figure 2.1. Sample paths of: N(·) = (N1(·), N2(·)); λ(·) = (λ1(·), λ2(·)); the cluster

processes originating in component 1 (diamonds), SN
1 (·) = (SN

1←1(·), SN
2←1(·)) and Sλ

1 (·) =
(Sλ

1←1(·), Sλ
2←1(·)); and the cluster processes originating in component 2 (crosses), SN

2 (·) =
(SN

1←2(·), SN
2←2(·)) and Sλ

2 (·) = (Sλ
1←2(·), Sλ

2←2(·)), under exponential decay. Parameters:

λ1 = λ2 = 0.5, α11 = α12 = 2.3, α21 = α22 = 2, B11 ≡ 1.3, B12 ≡ 0.6, B21 ≡ 0.8, B22 ≡ 0.5.
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for ⋆ ∈ {N ,Q,λ}. The columns S⋆
j (·) correspond to the cluster processes defined in

(2.12) and (2.13) and keep track of offspring events that originate from component j,

while the rows, in the sequel denoted by S⋆
(i)(·), record offspring events that arrive into

component i. Observe that the right-hand side expressions in (2.16) contain precisely

the entries of the rows.

From Section 2.2 we know that the underlying branching structure is similar for

the clusters corresponding to N (·),Q(·) and λ(·). This fact leads us to introduce

unifying notation. To this end, we define the functional Aj, j ∈ [d], that acts on

X(·) = (X1(·), . . . , Xd(·)), a (row-)vector-valued process taking values in Rd
+, and

P ⩾ 0, for each time u by

Aj

{
P,X(·)

}
(u) = P +

d∑
m=1

Kmj(u)∑
r=1

Xm(u− T (1)
m,r), (2.18)

where P accounts for the impact of the immigrant event and the terms in the sum-

mations account for the impact of offspring events, with Kmj(·) as in Definition 2.2.

Note the time shift to account for the arrival time of the first generation event, T
(1)
m,r.

The functional Aj allows us to compactly and coherently formulate distributional

equalities for the respective cluster processes. Indeed, zooming in on specific compo-

nents S⋆
i←j(·), with ⋆ ∈ {N ,Q,λ}, yields the micro-level distributional equalities at

time u given by

SN
i←j(u)

d
= Aj

{
1{i=j},S

N
(i)(·)

}
(u),

SQ
i←j(u)

d
= Aj

{
1{i=j}1{Ei>u },S

Q
(i)(·)

}
(u),

Sλ
i←j(u)

d
= Aj

{
Bij gij(u),S

λ
(i)(·)

}
(u),

(2.19)

which will prove to play a crucial role in the analysis of the cluster processes that

follows (in Section 2.4). Note the difference in the first arguments for the different

processes, and note that the second argument S⋆
(i)(·) = (S⋆

i←1(·), . . . , S⋆
i←d(·)) is the

i-th row of the matrix S⋆(·), which accounts for the offspring events. The Bij’s in

the expression for Sλ
i←j(·) are understood to be sampled for each event in the cluster.

Intuitively, Eqn. (2.19) says that the total impact of a cluster process from source

component j on target component i is equal in distribution to the superposition of

first-generation events and the impact of their offspring. The equality for SQ
i←j(·)

in (2.19) is the multivariate counterpart of [57, Eqn. (4.20)], in the sense that they

coincide when setting d = 1 in our setup.

Remark 2.2. The distributional equalities in (2.19) can be extended to the vectors
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S⋆
j (·) for ⋆ ∈ {N ,Q,λ} using the mapping Aj, defined at time u by

Aj

{
P ,X(·)}(u) = P +

d∑
m=1

Kmj(u)∑
k=1

Xm(u− Tk). (2.20)

Here, P ∈ Rd
+ accounts for the immigrant event, X(·) is an Rd×d

+ -valued matrix pro-

cess, and Xm(·) is its m-th column vector. For ⋆ ∈ {N ,Q,λ}, one can substitute

appropriate values P ⋆(u) for P and use the matrix S⋆(·) defined in (2.17) to account

for the offspring events, to obtain the vector-valued versions of Eqn. (2.19). Note that

(2.20) describes the underlying branching structure of entire clusters S⋆
j (·), and that

the entries of Aj correspond to A1, . . . ,Ad.

2.3.2 Transform characterization

The distributional equalities are key to characterize a joint transform of (Q(t),λ(t)).

We first make precise what we mean by joint transform.

Definition 2.3. Let (X(·),Y (·)) be a stochastic process taking values in Nd
+ × Rd

+.

For any t ∈ R+, the joint transform of (X(t),Y (t)) is given by

JX,Y (t) ≡ JX,Y (t, s, z) := E
[
zX(t)e−s

⊤Y (t)
]
≡ E

[ d∏
i=1

z
Xi(t)
i e−siYi(t)

]
, (2.21)

where s ∈ Rd
+ and z ∈ [−1, 1]d, and we denote the space of such transforms by J, such

that JX,Y (·) ∈ J. Here, E [·] is understood as E0 [·], i.e., expectation conditional upon

the respective filtration at t = 0, i.e., the value of (X(0),Y (0)).

Note that Eqn. (2.21) is well-defined, i.e., exists for any t ∈ R+, s ∈ Rd
+, and z ∈

[−1, 1]d. Throughout the paper, s ∈ Rd
+ and z ∈ [−1, 1]d remain fixed, unless stated

otherwise, and are therefore sometimes suppressed in the notation for readability. The

results that follow can, in principle, be extended to allow for complex-valued s and

z. In our setting, we consider the joint transform of (Q(t),λ(t)), with Q(0) = 0 and

λ(0) = λ, given by

JQ,λ(t) = E
[ d∏

i=1

z
Qi(t)
i e−siλi(t)

]
. (2.22)

We proceed to show that we can obtain a semi-closed-form expression for JQ,λ(t) us-

ing the distributional properties derived in Section 2.3.1. Specifically, we use Eqn. (2.16)

to describe the entries Qi(·) and λi(·) in terms of the respective cluster processes SQ
j (·)
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Chapter 2 Multivariate Hawkes Population Processes

and Sλ
j (·). To that end, we also need to consider the joint transform of (SQ

j (u),Sλ
j (u)),

with SQ
j (0) = ej, the unit vector with j-th entry equal to 1, and Sλ

j (0) = Bj, given

by

JSQ
j ,Sλ

j
(u) = E

[ d∏
i=1

z
SQ
i←j(u)

i e−siS
λ
i←j(u)

]
. (2.23)

We can now state the first main result regarding the joint transform JQ,λ(t), ex-

pressed in terms of JSQ
j ,Sλ

j
(u) for j ∈ [d] and u ∈ [0, t]; later in this paper (in Sec-

tion 2.4) it is shown how the JSQ
j ,Sλ

j
(u) can be identified. By using the cluster repre-

sentation, the independence of the cluster processes across components, and exploiting

the derived distributional equalities, we establish the following identity.

Theorem 2.1. The joint transform JQ,λ(t) satisfies

JQ,λ(t, s, z) =
d∏

j=1

exp
(
− λj(t+ sj) + λj

∫ t

0

JSQ
j ,Sλ

j
(u, s, z)du

)
. (2.24)

Proof. We start by conditioning on the number of immigrants (generation 0 events)

in each component, and use the fact that these arrive independently. For brevity,

we introduce the vectors I(t) = (I1(t), . . . , Id(t))
⊤ of immigrant processes and n =

(n1, . . . , nd)
⊤ ∈ Nd

0 (with N0 := {0, 1, 2, . . .}). From the distributional equalities (2.16),

we obtain

JQ,λ(t, s, z) =
∑
n∈Nd

0

E
[
e−s

⊤λ(t)zQ(t)
∣∣∣ I(t) = n

]
P(I(t) = n)

=
∑
n∈Nd

0

E
[ d∏
j=1

e−sjλj

d∏
i=1

e−si
∑nj

r=1 S
λ
i←j(t−T

(0)
j,r )z

∑nj
r=1 S

Q
i←j(t−T

(0)
j,r )

i

]
P(I(t) = n)

=
∑
n∈Nd

0

d∏
j=1

e−sjλjE
[ d∏

i=1

e−si
∑nj

r=1 S
λ
i←j(t−T

(0)
j,r )z

∑nj
r=1 S

Q
i←j(t−T

(0)
j,r )

i

]
P(I(t) = n),

where we have used the independence between the clusters and immigrant processes

in the second equality, the independence among clusters in the last equality, and write

P(I(t) = n) =
d∏

j=1

P(Ij(t) = nj),

for brevity. Recalling that each Ij(t) is a Poisson process, we can use the property

that conditional on the number of events at time t, the event arrival times are i.i.d.

26



2.3 Joint Transforms

according to a uniformly distributed random variable on the interval [0, t]. With T (j)

being uniformly distributed on [0, t] (independent of anything else, that is), we thus

have that, for each j ∈ [d], the sequence (T
(0)
j,r )r∈[nj ] are i.i.d. copies of T

(j). This allows

us to write

E
[ d∏

i=1

e−si
∑nj

r=1 S
λ
i←j(t−T

(0)
j,r )z

∑nj
r=1 S

Q
i←j(t−T

(0)
j,r )

i

]
=
(
E
[ d∏

i=1

e−siS
λ
i←j(t−T (j))z

SQ
i←j(t−T

(j))

i

])nj

=
(
JSQ

j ,Sλ
j
(u− T (j))

)nj ,

by the definition of JSQ
j ,Sλ

j
. Now using that T (j) is uniformly distributed on [0, t] and

that Ij(·) are Poisson processes with rate λj, we obtain that

JQ,λ(t) =
∑
n∈Nd

0

d∏
j=1

e−sjλj

(1
t

∫ t

0

JSQ
j ,Sλ

j
(t− u)du

)nj (λjt)
nj

nj!
e−λjt

=
∑
n∈Nd

0

d∏
j=1

e−λj(t+sj)

(
λj
∫ t

0
JSQ

j ,Sλ
j
(u)du

)nj

nj!

=
d∏

j=1

exp
(
− λj(t+ sj) + λj

∫ t

0

JSQ
j ,Sλ

j
(u))du

)
,

where the second equality holds by an elementary change of variables.

Remark 2.3. Due to the generality of the joint transform, one can easily obtain a

number of special cases. Taking d = 1, we obtain the univariate joint transform of the

processes (Q(t), λ(t)). Choosing si = 0 for all i ∈ [d] yields the probability generating

function of Q(t). Choosing zi = 1 for all i ∈ [d] yields the Laplace-Stieltjes transform

of λ(t). Finally, taking µi ≡ 0 for all i ∈ [d], we can obtain all above transforms for

the counting process N (t).

In multivariate time-series analysis, where multivariate point processes play an im-

portant role, one often wants to compute auto- and cross-covariances, involving ex-

pressions of the form E[Qi(t)Qj(t+ τ)] for a combination of i, j ∈ [d] and where τ > 0,

which in turn enable one to compute the respective auto- and cross-correlation func-

tions. Indeed, these functions are central objects in the identification and statistical

inference of multivariate Hawkes processes; see e.g., [2] in the Markovian case. In the

next proposition, we provide a characterization of the probability generating function

of Q(·) associated with different time points, by extending Theorem 2.1. We note that

this characterization may be extended further to include λ(·) as well as to cover any

finite number of time points.
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Proposition 2.1. For y, z ∈ [−1, 1]d and τ > 0, we have that

E
[ d∏

i=1

y
Qi(t)
i z

Qi(t+τ)
i

]
=

d∏
j=1

exp
(
λj

∫ t

0

(
E
[ d∏

i=1

(yizi)
SQ
i←j(u)

]
− 1
)
du
)

× exp
(
λj

∫ t+τ

t

(
E
[ d∏

i=1

z
SQ
i←j(u)

i

]
− 1
)
du
)
.

(2.25)

Proof. The proof is similar to the proof of Theorem 2.1. We therefore omit the details

and only explain the general structure of the proof. Compared to Theorem 2.1, one

now has to condition twice: first one conditions on the number of immigrant events up

to time t, and next, given the information up to time t, one re-conditions on the number

of immigrant events up to time t+ τ . By the independent increments property of the

(immigrant) Poisson processes, the immigrant event arrival times for the respective

conditioning events are uniformly distributed among the intervals [0, t] and [t, t +

τ ]. Properly using the independence among the clusters similar to Theorem 2.1 and

collecting terms, then yields the stated result.

Remark 2.4. A related process, with ample applications in e.g., insurance and risk, is

the multivariate compound Hawkes process, constructed as follows. For each i ∈ [d], let

(U
(n)
i )n∈N be a sequence of non-negative i.i.d. random variables independent of N (·).

Define the multivariate compound Hawkes process Z(·) := (Z1(·), . . . , Zd(·))⊤ entry-

wise for t ∈ R by

Zi(t) :=

Ni(t)∑
n=1

U
(n)
i . (2.26)

For fixed t ∈ R, the Laplace-Stieltjes transform T {Z(t)}(s) of Z(t) satisfies

T {Z(t)}(s) = E
[
e−s

⊤Z(t)
]
= E

[ d∏
i=1

(
T {Ui}(si)

)Ni(t)
]
, (2.27)

where T {Ui}(s) = E[e−sUi ] is the Laplace-Stieltjes transform of Ui evaluated in s. Also,

observe that T {Z(t)}(s) can be expressed in terms of quantities discussed earlier in this

section, as the right-hand side of (2.27) can be interpreted as the probability generating

function of N (t) evaluated in z = T {U}(s) ≡ (T {U1}(s1), . . . , T {Ud}(sd)). In other

words,

T {Z(t)}(s) = JN ,λ

(
t,0, T {U}(s)

)
. (2.28)
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2.4 Fixed-Point Theorem

2.4 Fixed-Point Theorem

In the previous section, we expressed the joint transform JQ,λ(t) of (Q(t),λ(t)) in

terms of

JSQ
j ,Sλ

j
(u) ≡ JSQ

j ,Sλ
j
(u, s, z); (2.29)

see in particular Eqn. (2.24) in the characterization of JQ,λ(t) that is given in Theorem

2.1. In this section, we focus our analysis on (2.29). More specifically, by employing the

previously derived distributional equalities, we first characterize the joint transform

(2.29) in terms of the fixed point of a certain mapping. Next, we provide an iteration

procedure involving this mapping that, as we formally prove, converges to the fixed

point, yielding the joint transform uniquely.

2.4.1 Spaces of joint transforms

Recall from Definition 2.3 the space J consisting of time-dependent joint transforms

of d-dimensional vector-valued processes (X(·),Y (·)). To handle the matrices S⋆(·)
for ⋆ ∈ {N ,Q,λ}, we extend the space J to include matrices, as follows.

Definition 2.4. Set Jd to be the d-dimensional analogue of J, in the sense that an

element JX,Y (·) ∈ Jd is given at time u by

JX,Y (u) :=

JX1,Y1(u)
...

JXd,Yd
(u)

 , (2.30)

where for each j ∈ [d], the entry JXj ,Yj
(·) ∈ J is the joint transform corresponding to

(Xj(u),Yj(u)) = ((X1j(u), Y1j(u)), . . . , (Xdj(u), Ydj(u)))
⊤ as defined in Eqn. (2.21).

Note that an entry on the right-hand side of Eqn. (2.30) can be viewed as the

joint transform of the columns of the matrix-valued random object (X(u),Y (u)) =

(Xij(u), Yij(u))i,j∈[d].

When considering the processes (SQ(·),Sλ(·)), recall that for each j ∈ [d] we have

that the transform JSQ
j ,Sλ

j
(·) is an element of J by Eqn. (2.23). The space Jd plays

an important role in the exploitation of the distributional equalities given in Eqn.

(2.19). Since in our general multivariate Hawkes model a cluster originating in source

component j can in principle generate events in any of the components, characterizing

JSQ
j ,Sλ

j
(·) requires us to simultaneously consider JSQ

m,Sλ
m
(·) for all m ∈ [d]. This
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Chapter 2 Multivariate Hawkes Population Processes

explains why we work with the following vector of time-dependent joint transforms:

J SQ,Sλ(u) =


JSQ

1 ,Sλ
1
(u)

...

JSQ
d ,Sλ

d
(u)

 . (2.31)

Here, as for any j ∈ [d] the entry JSQ
j ,Sλ

j
(·) is in J by Eqn. (2.23), we have that

J SQ,Sλ(·) ∈ Jd. In words, J SQ,Sλ(u) is the vector containing the time-dependent joint

transforms corresponding to all pairs of cluster processes (SQ
j (u),Sλ

j (u)) for j ∈ [d]

at time u, i.e., the columns of (SQ(u),Sλ(u)). This informally entails that the object

J SQ,Sλ(u) contains a full probabilistic description of all underlying components.

Next, we state the following definition.

Definition 2.5. Consider the mapping ϕ : Jd → Jd which maps an element J ≡
JX,Y (·) ∈ Jd to:

J (·) =

J1(·)
...

Jd(·)

 7→

ϕ1(J1, . . . ,Jd)(·)
...

ϕd(J1, . . . ,Jd)(·)

 =

ϕ1(J )(·)
...

ϕd(J )(·)

 = ϕ(J )(·), (2.32)

where each entry ϕj(J )(·) ∈ J is defined at time u by

ϕj(J )(u) ≡ ϕj(J1, . . . ,Jd)(u, s, z)

:= E
[
z
1{Ej>u}

j

] d∏
i=1

E
[
exp

(
− siBijgij(u)

)]
(2.33)

×
d∏

m=1

E
[
exp

(
−Bmj

∫ u

0

gmj(v)
(
1− Jm(u− v)

)
dv
)]
.

Note that, in Definition 2.5, we suppressed the function notation J ≡ J (·) in

the argument of ϕ for ease of readability, allowing us to denote the image of J (·) as
ϕ(J )(·). It is not immediately clear that the mapping ϕ is well-defined, i.e., that for

any JX,Y (·) ∈ Jd, we have ϕ(JX,Y )(·) ∈ Jd as well. We can show that ϕ(JX,Y )(·) ∈
Jd, as desired, by suitably modifying the arguments used e.g., in the proof of [1,

Theorem 1] to this more complex setting.

Lemma 2.1. The mapping ϕ in Eqn. (2.32) is well-defined.

Proof. See Section 2.A in the Appendix.
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2.4.2 Fixed point and convergence results

In this subsection, we characterize J SQ,Sλ(u) in terms of a fixed point involving the

mapping ϕ. We then show that iterating the mapping ϕ leads us to a unique limit

(i.e., the value of J SQ,Sλ(u) that we are after). To facilitate the analysis, we need to

define an appropriate notion of distance for the space Jd. We endow the space Jd with
the topology induced by the norm ∥·∥Jd , defined by

∥J ∥Jd := sup
u∈[0,t]
s∈Rd

+

z∈[−1,1]d

∥J (u, s, z)∥Rd ≡ sup
u,s,z

∥J (u, s, z)∥Rd .

The following result can be proven by suitably applying standard topological methods.

Lemma 2.2. The mapping ϕ in Eqn. (2.32) is continuous with respect to the norm

∥·∥Jd.

Proof. See Section 2.A in the Appendix.

Before we can state the main results of this section, we need an intermediate result.

In Definition 2.2, we saw that every event in source component j generates events

into target component m according to an inhomogeneous Poisson process Kmj(·),
with intensity Bmjgmj(·), with Bmj understood to be sampled at every event in Nj(·).
We need to specify when the offspring events arrive exactly, since these can generate

further offspring only after they arrive. Given u as the remaining time after the arrival

of the source event, let v ⩽ u and denote by Hij(v |u) the probability that an offspring

event was already generated before v, conditional on it being generated before u. Also

recall that each first-generation event generates a sub-cluster, as part of the original

cluster.

Lemma 2.3. Consider the cluster process S⋆
j (·) for ⋆ ∈ {N ,Q,λ} generated by an

immigrant event T
(0)
j,r in component j ∈ [d] and let u = t − T

(0)
j,r be the time after this

arrival. Then the following statements hold:

(i) Sub-clusters are i.i.d.; more precisely, for each m ∈ [d], the sequence(
S⋆

m(u− T (1)
m,r)

)
r∈[n]

,

is an i.i.d. sequence, conditional on {Kmj(u) = n} for some n ∈ N and with

{T (1)
m,r}r∈[n] the arrival times of the first-generation events.

(ii) For v ⩽ u, the density hij(v |u) = d
dv
Hij(v |u) is given by

hij(v |u) =
gij(v)∫ u

0
gij(w) dw

. (2.34)
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Proof. To prove part (i), fix m ∈ [d]. Then, conditional on {Kmj(u) = n}, the

number of first-generation events, the sub-clusters S⋆
m(u − T

(1)
m,r) can be considered

clusters generated by an immigrant in component m ∈ [d], which are i.i.d. due to the

construction in part (2) of Definition 2.2, modulo the time shift.

To prove (ii), we note that Kij(t) is distributed as a Poisson random variable with

parameter
∫ t

0
Bijgij(s)ds, conditional on the realization ofBij; see Definition 2.2. Using

Bayes rule, we compute

Hij(v |u) = P(Kij(v) = 1, Kij(u)−Kij(v) = 0 | Kij(u) = 1)

=
exp

(
−
∫ v

0
Bijgij(w)dw

) ∫ v

0
Bijgij(w)dw exp

(
−
∫ u

v
Bijgij(w)dw

)
exp

(
−
∫ u

0
Bijgij(w)dw

) ∫ u

0
Bijgij(w)dw

=

∫ v

0
gij(w)dw∫ u

0
gij(w) dw

,

which yields the stated result.

We proceed to our characterization of the transform J SQ,Sλ(u), for given s, z, in

terms of a fixed point of the mapping ϕ. Here, by ‘fixed point’ we mean that there

exists an element in Jd such that applying the mapping ϕ to it returns the same

element. (Uniqueness considerations will be dealt with later.)

Theorem 2.2. The vector of time-dependent joint transforms J SQ,Sλ(u) defined in

(2.31) satisfies the fixed-point equation

J SQ,Sλ(u) = ϕ(J SQ,Sλ)(u). (2.35)

Proof. The structure of the proof is as follows. We start with the law of total expec-

tation, then use the i.i.d. nature of (sub)-clusters, write out the distribution of the

first-generation events, and then collect terms.

We fix j ∈ [d], and show that Eqn. (2.35) holds for the entry ϕj(J SQ,Sλ)(u).

We throughout keep s, z fixed. We start the computation of JSQ
j ,Sλ

j
(u) by apply-

ing the tower property and conditioning on the number of first-generation events

{T (1)
m,r}r∈N. For brevity, introduce the vector Kj(u) = (K1j, . . . , Kdj(u))

⊤, and note

that P(Kj(u) = n) =
∏d

m=1 P(Kmj(u) = nm). Using the distributional equalities

(2.19), in combination with the conditional independence between SQ
i←j(u), S

λ
i←j(u)

and Kmj(u), we have

JSQ
j ,Sλ

j
(u) =

∑
n∈Nd

0

E
[ d∏

i=1

z
SQ
i←j(u)

i e−siS
λ
i←j(u)

∣∣∣Kj(u) = n
]
P(Kj(u) = n) (2.36)
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= c(u)
∑
n∈Nd

0

E
[ d∏

i=1

z

d∑
m=1

nm∑
r=1

SQ
i←m(u−T (1)

m,r)

i e
−si

d∑
m=1

nm∑
r=1

Sλ
i←m(u−T (1)

m,r)
]
P(Kj(u) = n),

where, for brevity, we introduced the constant

c(u) := E
[
z
1{Ej>u}

j

] d∏
i=1

E
[
e−siBijgij(u)

]
.

We now use the i.i.d. nature of the sub-clusters, as described by Lemma 2.3, to write

the inner expectation in (2.36) as a product over the source components of the first-

generation events. To that end, let T (mj) be a random variable with probability density

function hmj(·) as given in (ii) of Lemma 2.3, such that T (mj) is distributed as T
(1)
m,r if

it was generated by Kmj(·). With these observations and the definition of J SQ,Sλ(·),
we can write

E
[ d∏

i=1

z

d∑
m=1

nm∑
r=1

SQ
i←m(u−T (1)

m,r)

i e
−si

d∑
m=1

nm∑
r=1

Sλ
i←m(u−T (1)

m,r)
]

=
d∏

m=1

E
[ d∏

i=1

z
SQ
i←m(u−T (mj))

i e−siS
λ
i←m(u−T (mj))

]nm

=
d∏

m=1

(
JSQ

m,Sλ
m
(u− T (mj))

)nm

.

Using that the Kmj(·) are Poisson processes with intensity Bmjgmj(·), and writing out

the density hmj(· |u), we thus find

JSQ
j ,Sλ

j
(u)

= c(u)E
[ ∑
n∈Nd

0

d∏
m=1

(∫ u

0

hmj(v |u)JSQ
m,Sλ

m
(u− v)dv

)nm

×
(
Bmj

∫ u

0
gmj(v) dv

)nm

nm!
exp

(
−Bmj

∫ u

0

gmj(v) dv
)]

= c(u)E
[ ∑
n∈Nd

0

d∏
m=1

1

nm!

(
Bmj

∫ u

0

gmj(v)JSQ
m,Sλ

m
(u− v) dv

)nm

exp
(
−Bmj

∫ u

0

gmj(v) dv
)]

= c(u)
d∏

m=1

E
[
exp

(
Bmj

∫ u

0

gmj(v)
(
JSQ

m,Sλ
m
(u− v)− 1)dv

)]
,

where the last equality holds due to independence between the random variables Bmj.

Note that this last expression equals ϕj(J SQ,Sλ)(u, s, z) as was introduced in (2.33),

which finishes the proof.
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The functional equation described in Eqn. (2.35) can be exploited to numerically

approximate the joint transforms of the cluster processes. The convergence result of

Theorem 2.3 below entails that iterating the map ϕ leads to the desired fixed point,

thus having found J SQ,Sλ(u) uniquely. Once J SQ,Sλ(u) has been obtained, numerical

inversion can be applied to obtain the corresponding joint densities and distribution

functions; likewise, arbitrary joint spatial-temporal moments can be evaluated by dif-

ferentiation.

We now proceed to establish the convergence result. Consider a joint transform

J (0)(·) ∈ Jd. Define the sequence (J (n)(·))n∈N0 by J (n)(·) := ϕn(J )(·) for n ∈ N,
where ϕ is the mapping in Eqn. (2.33) and ϕn denotes the n-fold iteration. Note that

J (n)(·) ∈ Jd for all n ∈ N0 by Lemma 2.1 and induction.

Theorem 2.3. For any J (0)(·) ∈ Jd, the sequence (J (n))n∈N0(u) converges pointwise

to the fixed point J SQ,Sλ(u), i.e., as n→ ∞, for any u ⩽ t,

J (n)(u) ≡ J (n)(u, s, z) → J SQ,Sλ(u, s, z) ≡ J SQ,Sλ(u). (2.37)

Proof. Consider, for J (0)
A (·),J (0)

B (·) ∈ Jd, the sequences J (n)
A (·),J (n)

B (·) ∈ Jd by

J (n)
A (·) := ϕ(J (n−1)

A (·)), J (n)
B (·) := ϕ(J (n−1)

B (·)),

where n ∈ N. We show that the sequences have a unique limit by first proving that

there exists a constant M > 0 such that, uniformly in n ∈ N0 and u ⩽ t,

|
(
J (n)

A

)
j
(u)−

(
J (n)

B

)
j
(u)| ⩽ 1

n!
(Mu)n, (2.38)

where
(
J (n)

i

)
j
(u) it the j-th entry of J (n)

i (u), for i ∈ {A,B}. We prove (2.38) in-

ductively. For n = 1, using the bound in Eqn. (2.70) in the proof of Lemma 2.2, we

have

|
(
J (1)

A

)
j
(u)−

(
J (1)

B

)
j
(u)|2 = |ϕj(J (0)

A )(u)− ϕj(J (0)
B )(u)|2

⩽ dmax
m∈[d]

E[Bmj]
2∥gmj∥2L1(R+)

∫ u

0

∣∣J (0)
A

)
j
(v)−

(
J (0)

B

)
j
(v)
∣∣2dv

⩽ 4dmax
m∈[d]

E[Bmj]
2∥gmj∥2L1(R+)u

⩽Mu,

where we choose M = maxj∈[d]Mj, with Mj := 4dmaxi∈[d] E[Bij]
2 ∥gij∥2L1(R+), which

is finite by assumption. Note that the second inequality holds since |
(
J (0)

A

)
j
(v) −(

J (0)
B

)
j
(v)| ⩽ 2 and that the base case is thus proven. For the induction step, assume
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that (2.38) holds for some n ∈ N for every component j ∈ [d]. Again applying the

bounds in Eqn. (2.70), we have

|
(
J (n+1)

A

)
j
(u)−

(
J (n+1)

B

)
j
(u)|2

⩽M

∫ u

0

|
(
J (n)

A

)
m
(v)−

(
J (n)

B

)
m
(v)| dv

⩽M
1

n!

∫ u

0

(Mv)n dv =
1

(n+ 1)!
(Mu)n+1.

Since this holds for all j ∈ [d], it is clear that (2.38) implies that

∥J (n)
A (u)−J (n)

B (u)∥2Rd ⩽
d∑

j=1

1

n!
(Mu)n ⩽

d

n!
(Mu)n, (2.39)

which implies

∥J (n)
A (u)−J (n)

B (u)∥Rd → 0. (2.40)

Next, we prove that the sequence (J (n)
A (u))n∈N0 converges for any u ⩽ t, by showing

that it is a Cauchy sequence. Note that the bound in Eqn. (2.39) holds for any

initial J (0)
B (·) ∈ Jd. In particular, for any k ∈ N, set J (0)

B (·) = J (k)
A (·), such that

J (n)
B (·) = ϕn(J (k)

A (·) = J (n+k)
A (·), which implies

∥J (n)
A (u)−J (n+k)

A (u)∥2Rd = ∥J (n)
A (u)−J (n)

B (u)∥2Rd ⩽
d

n!

(
Mu

)n
. (2.41)

Observe that the bound is uniform in k ∈ N. Let ϵ > 0 and choose N ∈ N such that

(d/N !)(Mu)N < ϵ/2. Then we have ∀m,n ⩾ N that

∥J (n)
A (u)−J (m)

A (u)∥2Rd = ∥J (N+(n−N))
A (u)−J (N+(m−N))

A (u)∥2Rd

⩽ ∥J (N+(n−N))
A (u)−J (N)

A (u)∥2Rd + ∥J (N)
A (u)−J (N+(m−N))

A (u)∥2Rd

< ϵ/2 + ϵ/2 = ϵ,

by the triangle inequality and using the bound in Eqn. (2.41). Hence, the sequence

(J (n)
A (u))n∈N0 is Cauchy and it converges. Mirroring this argument shows that the

sequence (J (n)
B (u))n∈N0 converges. Moreover, their difference vanishes by Eqn. (2.40)

so both sequences have the same limit, i.e.

lim
n→∞

J (n)
A (u) = lim

n→∞
J (n)

B (u) = J (u), (2.42)

for some J (u). This implies that for any initial transform J (0)(·) ∈ Jd, we have that

J (n)(u) → J (u) as n→ ∞.
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We now show that J (·) ∈ Jd, which we argue to hold by applying Lévy’s continuity

theorem for Laplace-Stieltjes transforms. (It suffices to consider z ∈ [0, 1]d; the case

z ∈ [−1, 0)d can be dealt with analogously.) Note that (J (n))j(u) can be considered

to be a Laplace-Stieltjes transform; indeed, as a consequence of J (n)(·) ∈ Jd, we

can rewrite, for certain Ym(u) ≡ Y
(j,n)
m (u), Xm(u) ≡ X

(j,n)
m (u), and with Z(j,n)(u) :=

(Y (j,n)(u),X(j,n)(u))⊤ a random vector of length 2d,

(
J (n)

)
j
(u) = E

[ d∏
m=1

zYm(u)
m e−smXm(u)

]
= E

[ d∏
m=1

zYm(u)
m

2d∏
m=d+1

e−sm−dXm−d(u)
]

= E
[ d∏
m=1

e−rmYm(u)

2d∏
m=d+1

e−rmXm−d(u)
]
= E

[
exp

(
− r⊤Z(j,n)(u)

)]
,

where we set, for m = 1, . . . , d, e−rm = zm and, for m = d + 1, . . . , 2d, rm = sm−d,

with rm ⩾ 0 for all m ∈ [2d]. As a result, (J (n))j(u) is the Laplace-Stieltjes transform

of the random vector Z(j,n)(u). Since we established above that the limit of J (n)(u),

as n → ∞, exists, Lévy’s continuity theorem, see e.g., [34, XIII: Theorem 2], now

implies that there is a random vector Z(j) such that Z(j,n)(u) converges weakly to Z(j)

as n → ∞, with the Laplace-Stieltjes transform of Z(j) being (J )j(u). This implies

(J )j(·) ∈ J, and hence also J (·) ∈ Jd.
Finally, by Lemma 2.2 we know that ϕ is continuous, so

J (u) = lim
n→∞

J (n+1)(u) = lim
n→∞

ϕ
(
J (n)

)
(u) = ϕ

(
lim
n→∞

J (n)
)
(u) = ϕ(J )(u),

implying that the limit point is a fixed point of ϕ. By Theorem 2.2 we know that

J SQ,Sλ(·) is a fixed point of ϕ and combined with (2.42), where we derived that every

sequence has the same (unique) limit, we have that J (n)(u) → J SQ,Sλ(u) as n→ ∞,

irrespective of J (0)(·) ∈ Jd.

2.5 Tail Probabilities

In the previous sections, we have provided an exact analysis of the probabilistic behav-

ior of (primarily) the random object (Q(t),λ(t)) for t > 0. We have characterized in

particular the associated joint transform and established a corresponding fixed-point

representation, allowing for general decay functions gij(·), general distributions of the
jump sizes Bij, and exponential distributions of the sojourn times Ei. In the present

section, we provide an asymptotic analysis pertaining directly to the probability distri-

bution functions ofQ(t) and λ(t), in the setting where the jump sizes’ tail distributions

are essentially of a power-law nature.

36



2.5 Tail Probabilities

2.5.1 Power-law tails and the Hawkes graph

We start our exposition by introducing the concept of asymptotically power-law tails.

Definition 2.6 (Asymptotically Power-Law Tail (APT)). We say that a

scalar-valued non-negative random variable X has an asymptotically power-law tail

if there exist positive constants C and γ such that

P(X > x)xγ → C,

as x→ ∞. We write: X ∈ APT(C, γ) and refer to γ as the tail index.

In the sequel, we assume that, for each i, j ∈ [d], either Bij ∈ APT(Cij, γij) for

constants Cij > 0 and γij > 1, or Bij ≡ 0. Later in this section we discuss a few

generalizations.

In the literature, a substantial amount of attention has been devoted to probabilistic

systems in which some of the underlying random variables have a distribution function

with a power-law tail. One often works with a class of distributions that is closely

related to, but slightly wider than, APT, namely the class of regularly varying distri-

butions: then, P(X > x) behaves as ℓ(x)x−γ when x → ∞, for some slowly-varying

function ℓ(·) (i.e., for all a > 0 we have that ℓ(ax)/ℓ(x) → 1). A detailed exposition of

regular variation in the context of insurance and finance can, for instance, be found in

the monograph [32], and for examples of its use in queueing theory we refer to [36, 78];

a general treatment is in [10]. A powerful concept in this branch of the literature

is the so-called ‘principle of a single big jump’: in many systems, rare events happen

with ‘overwhelming’ probability due to a single extreme outcome of a random quantity

that features in the model. In a simple single-dimensional counterpart of our model,

it is shown in [57] that in the spirit of this principle Q(t) essentially inherits the tail

behavior of the jump size B.

An important result that we exploit in the general context of this section, is a

closure property related to the sum of independent random variables in APT. If Xi

is in APT with tail index γi, for i = 1, 2, and X1 and X2 are independent, then

X1 + X2 is also in APT with tail index equal to min{γ1, γ2}, i.e., the heaviest tail

dominates; cf. [32]. Based on this property, one could näıvely guess that in the present

multivariate setting, the tail of Qi(t) will resemble the tail of the heaviest among

Bi1, . . . , Bid. This is however not necessarily the case: due to potential cross-excitation,

heavy tails originating in another component may indirectly propagate to component

i. This concept of propagation can be conveniently reasoned about relying on so-

called Hawkes graphs, defined in the present setting as follows (see also, e.g., [7, 56]

for related, different definitions).
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Chapter 2 Multivariate Hawkes Population Processes

Definition 2.7 (Hawkes graph). Let V = {1, . . . , d} be a set of vertices. Let an

edge eij from j to i exist if Bij ∈ APT(Cij, γij) for Cij > 0, γij > 1 (i.e., Bij is not

identical to 0), and call the resulting set of directed edges E. Then, the directed graph

(V,E) is called the Hawkes graph.

Note that the vertices V of the Hawkes graph are associated to the components of

the Hawkes process (Q(·),λ(·),N (·)), i.e., i ∈ V corresponds to Qi(t) (or λi(t), Ni(t)).

The states in the Hawkes graph (V,E) can be classified similarly to how this is con-

ducted for Markov chains. To this end, we set Pi←j = 1 if a path from j to i in (V,E)

exists, and Pi←j = 0 otherwise. (The order of the indices in Pi←j might look unnat-

ural at first sight, but it should be borne in mind that Bij ∈ APT(Cij, γij) implies

that there is an edge from j to i in the Hawkes graph, with corresponding jump sizes

generated according to the random variable Bij.) We say that vertices i and j belong

to the same class if Pi←j = Pj←i = 1. We shall call a class recurrent if there is no path

to vertices outside the class, otherwise it is transient.

The following lemma relates the cluster processes to the Hawkes graph path indi-

cators. The proof follows using standard techniques and is for completeness given in

Section 2.A in the Appendix.

Lemma 2.4. Consider u > 0. The following statements are equivalent:

(i) E[SQ
i←j(u)] > 0;

(ii) E[Sλ
i←j(u)] > 0; and

(iii) Pi←j = 1.

Proof. See Section 2.A in the Appendix.

2.5.2 Tails of the marginal distributions

In this subsection, we establish the asymptotic behavior of P(Qi(t) > x) and P(λi(t) >
x) as x→ ∞, for any i ∈ [d]. We start by introducing a few objects that play a pivotal

role in our analysis:

δij := min
m∈[d]

{γmj : Pi←m = 1}, γ̄i := min
j∈[d]

δij,

Ii := argmin
j∈[d]

δij, Iij := argmin
m∈[d]

{γmj : j ∈ Ii}.

Given the existence of a path from m to i, δij determines the smallest γmj associated

to Bmj over all such m for a given j. Here, it is noted that we do not assume that

minj∈[d] δij is attained at a unique argument, i.e., Ii is a set that potentially consists

of more than one element; the same applies to Iij.
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2.5 Tail Probabilities

In addition, we introduce two functionals, in the same spirit as Eqn. (2.18). First,

with x(·) = (x1(·), . . . , xd(·)) a (row-)vector-valued function and P ⩾ 0, for j ∈ [d],

Bj

{
P,x(·)

}
(u) = P +

d∑
m=1

E[Bmj]

∫ u

0

gmj(v)xm(u− v) dv. (2.43)

Second, with y(·) = (y1(·), . . . , yd(·)) denoting another (row-)vector-valued function

and δ ∈ (1, 2), for i, j ∈ [d],

Bδ
ij

{
P,x(·) |y(·)}(u) = ωiP +

∑
m∈Ii

E[Bmj]

∫ u

0

gmj(v)xm(u− v) dv

+ ωi

∑
m∈Iij

Cmj

(∫ u

0

gmj(v) ym(u− v) dv

)δ

, (2.44)

where ωi = Γ(1− δ) with Γ(·) the Gamma function.

In the sequel, we will intensively work with functions R⋆
ij(·) and R⋆,δ

ij (·), ⋆ ∈
{Q,λ}, defined using (2.43)–(2.44), and their row-vector-valued counterparts R⋆

(i)(·)
and R⋆,δ

(i) (·), defined analogously to S⋆
(i)(·). The functions R

Q
ij (·) and Rλ

ij(·) for i, j ∈ [d]

satisfy the system of coupled functional equations

RQ
ij (u) = Bj

{
1{i=j} P(Ei > u),RQ

(i)(·)
}
(u), Rλ

ij(u) = Bj

{
E[Bij] gij(u),R

λ
(i)(·)

}
(u),

(2.45)

whereas the functions RQ,δ
ij (·) and Rλ,δ

ij (·), with j ∈ Ii and δ ∈ (1, 2), satisfy the system

of coupled functional equations

RQ,δ
ij (u) = Bδ

ij

{
0,RQ,δ

(i) (·) |R
Q
(i)(·)

}
(u), Rλ,δ

ij (u) = Bδ
ij

{
ωiCij,R

λ,δ
(i) (·) |R

λ
(i)(·)

}
(u).

(2.46)

The following theorem reveals how APT-behavior is inherited by Qi(t) and λi(t),

i ∈ [d]. Henceforth, for positive functions f(·) and g(·), we write f(x) ∼ g(x) as

x→ x0 to mean limx→x0 f(x)/g(x) = 1.

Theorem 2.4. Fix i ∈ [d] and t ∈ R+. Assume that γ̄i ∈ (1, 2). Then, Qi(t) ∈
APT(C̄Q

i , γ̄i) and λi(t) ∈ APT(C̄λ
i , γ̄i) for some C̄Q

i , C̄
λ
i > 0. More precisely,

E
[
zQi(t)

]
− 1 + (1− z)E

[
Qi(t)

]
∼ −(1− z)γ̄i

∑
j∈Ii

λj

∫ t

0

RQ,γ̄i
ij (u) du,

E
[
e−sλi(t)

]
− 1 + sE

[
λi(t)

]
∼ −sγ̄i

∑
j∈Ii

λj

∫ t

0

Rλ,γ̄i
ij (u) du,

39



Chapter 2 Multivariate Hawkes Population Processes

as z ↑ 1 and s ↓ 0, respectively, and the first moments equal

E
[
Qi(t)

]
=

d∑
j=1

λj

∫ t

0

RQ
ij (u) du, E

[
λi(t)

]
=

d∑
j=1

λj

∫ t

0

Rλ
ij(u) du.

Before we give the proof of Theorem 2.4, we discuss the systems of Eqns. (2.45)–

(2.46). First, observe that they can be considered as vector-valued renewal equations,

owing to the structure of (2.43)–(2.44). We point out how to solve these for (2.45);

(2.46) can be dealt with analogously, hence we only provide its final result. In the

sequel, we denote the Laplace transform of f(·) by

L{f(·)}(r) =
∫ ∞
0

e−ru f(u) du,

for r ⩾ 0. Taking the Laplace transform of (2.45), recognizing the convolution struc-

ture, we readily obtain, with F̄i(·) = P(Ei > · ),

L
{
RQ

ij (·)
}
(r) = 1{i=j}L

{
F̄i(·)

}
(r) +

d∑
m=1

E[Bmj] · L
{
gmj(·)

}
(r) · L

{
RQ

im(·)
}
(r).

(2.47)

For a given argument r ⩾ 0 and component i ∈ [d], Eqn. (2.47) is a linear system from

which the unknowns zij(r) = L{RQ
ij (·)}(r) can be solved. This is done by first solving

for any recurrent class the corresponding linear subsystem, and then iteratively for any

transient class leading to these recurrent classes. Having computed zij(·), standard
Laplace inversion can be invoked to identify the functions RQ

ij (·); see also Section 2.6.

A similar argumentation applies when taking the Laplace transform of (2.46), lead-

ing to,

L
{
RQ,δ

ij (·)
}
(r) =

∑
m∈Ii

E[Bmj] · L
{
gmj(·)

}
(r) · L

{
RQ,δ

im (·)
}
(r)

+ ωi

∑
m∈Iij

Cmj L
{(
gmj ∗RQ

im

)δ
(·)
}
(r), (2.48)

where, as usual, ∗ denotes the convolution operator, i.e.,

(
gmj ∗RQ

im

)δ
(t) =

(∫ t

0

gmj(v)R
Q
im(t− v)dv

)δ

.

This is again a linear system, from which the z̄ij(r) = L{RQ,δ
ij (·)}(r) can be solved

for any given r ⩾ 0. Recall that at this stage the functions RQ
im(·) are available, thus

allowing us to evaluate the last term in (2.48). We can obtain similar equations for

the transforms pertaining to λi(t); as these are fully analogous, we leave them out.
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Proof of Theorem 2.4. We fix i ∈ [d] and prove the result for Qi(t); the arguments for

λi(t) are similar, mutatis mutandis. To that end, we set sm = 0 for all m ∈ [d] and

zk = 1 for k ̸= i and zi ≡ z ∈ [−1, 1] in the joint transform of (Q(t),λ(t)), JQ,λ(t).

We thus obtain the z-transform of Qi(t) in terms of the cluster process entries SQ
i←j(u),

E
[
zQi(t)

]
=

d∏
j=1

exp
(
λj

∫ t

0

(
E
[
zS

Q
i←j(u)

]
− 1
)
du
)
,

E
[
zS

Q
i←j(u)

]
= E

[
z1{i=j}1{Ei>u}

] d∏
m=1

T {Bmj}
(∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv),

(2.49)

where the latter equation holds by our fixed-point theorem, i.e., Theorem 2.2, and

T {Bmj}(s) = E[e−sBmj ] denotes the Laplace-Stieltjes transform of Bmj. The idea

is to analyze expansions of the z-transform appearing in (2.49) by using Tauberian

theorems, so as to establish the tail behavior of Qi(t).

Under the assumption that Bmj ∈ APT(Cmj, γmj), the Bmj that have index γmj ∈
(1, 2) satisfy

T {Bmj}(r) ∼ 1− rE[Bmj]− CmjΓ(1− γmj)r
γmj , (2.50)

as r ↓ 0, where Γ(·) is the Gamma function, by virtue of a Tauberian theorem; see

e.g., [10, Theorem 8.1.6]. Observe that∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv ↓ 0

as z ↑ 1. Using this in (2.50), we obtain

T {Bmj}
(∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv)

∼ 1− E[Bmj]

∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv (2.51)

− CmjΓ(1− γmj)
(∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv)γmj

.

We substitute (2.51) in the expression for E
[
zS

Q
i←j(u)

]
in (2.49) in combination with the

calculation E[z1{i=j}1{Ei>u} ] = P(Ei ⩽ u)+z1{i=j}P(Ei > u) = 1−(1−z1{i=j})P(Ej > u).

This allows us to write, up to O((1− z)2) terms,

1− E
[
zS

Q
i←j(u)

]
∼ 1−

(
1− (1− z1{i=j})P(Ei > u)

)
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×
d∏

m=1

{
1− E[Bmj]

∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv

− CmjΓ(1− γmj)
(∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv)γmj

}
= (1− z1{i=j})P(Ei > u) +

d∑
m=1

E[Bmj]

∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv

+
d∑

m=1

CmjΓ(1− γmj)
(∫ u

0

gmj(v)
(
1− E

[
zS

Q
i←m(u−v)])dv)γmj

.

(2.52)

We now focus on the linear terms, and the next term of order strictly between 1

and 2, yet to be determined. As for the linear terms, consider the expansion

1− E
[
zS

Q
i←j(u)

]
= 1−

(
1− (1− z)E

[
SQ
i←j(u)

])
+O((1− z)2)

= (1− z)E
[
SQ
i←j(u)

]
+O((1− z)2) = (1− z)RQ

ij (u) +O((1− z)2),

where the last equality follows from the observation RQ
ij (u) = E[SQ

i←j(u)]; applying the

distributional equality (2.19) to E[SQ
i←j(u)] yields Eqn. (2.45).

For the next term (beyond the linear terms, that is), we expand 1−E
[
zS

Q
i←j(u)

]
again,

now including a term of fractional order ϑij ∈ (1, 2) (whose value will be determined

below), yielding

1− E
[
zS

Q
i←j(u)

]
= (1− z)RQ

ij (u) + (1− z)ϑijRQ,δ
ij (u) +O((1− z)2),

where RQ,δ
ij (u) is the solution to (2.46), which we argue next. By substituting this

expansion in (2.52), equating the terms of order between 1 and 2, and ignoring higher-

order terms, we obtain

(1− z)ϑijRQ,δ
ij (u) =

d∑
m=1

(1− z)ϑimE[Bmj]

∫ t

0

gmj(v)R
Q,δ
im (u− v)dv

+
d∑

m=1

Cmj(1− z)γmjΓ(1− γmj)
(∫ u

0

gmj(v)R
Q
im(u− v)dv

)γmj

.

The problem of solving this system of equations comes down to determining ϑi1, . . . , ϑid

and finding the term(s) of lowest order among the γmj. In other words, we need to

equate ϑij on the LHS with the minimal γmj on the RHS among the non-zero terms. As

RQ
im(u) = E[SQ

i←m(u)], we have by Lemma 2.4 that RQ
im(u) is non-zero if there is a path

from m to i in the Hawkes graph. We therefore obtain the condition ϑij = δij, with δij
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2.5 Tail Probabilities

introduced at the beginning of Section 2.5.2. Note that ϑij does not necessarily equal

γij, but rather corresponds to the heaviest tail originating from j with a potential

path of propagation to i. Taking into account the source and target component of

this heaviest tail, we obtain Eqn. (2.46). Finally, we substitute this back into the

z-transform of Qi(t) in (2.49), yielding, up to O((1− z)2) terms, as z ↑ 1,

E
[
zQi(t)

]
∼

d∏
j=1

exp
(
− λj

∫ t

0

(
(1− z)RQ

ij (u) + (1− z)ϑijRQ,δ
ij (u)

)
du
)

∼ 1− (1− z)
d∑

j=1

λj

∫ t

0

RQ
ij (u)du−

d∑
j=1

(1− z)ϑijλj

∫ t

0

RQ,δ
ij (u)du,

where in the last asymptotic equality we used the Taylor expansion of the exponential

expression. To obtain the lowest order term among the ϑij, we set γ̄i := minj∈[d]{ϑij},
and the components from where the heaviest tails originate are given by the set Ii :=

argminj∈[d]{ϑij} ⊆ [d]. After rewriting this last expression and observing that the

linear term equals E[Qi(t)], we obtain

E
[
zQi(t)

]
− 1 + (1− z)E[Qi(t)] ∼ −(1− z)γ̄i

∑
j∈Ii

λj

∫ t

0

RQ,γ̄i
ij (u)du. (2.53)

Note that (2.53) is now in the general form stated in [10, Theorem 8.1.6], as an

expansion of the z-transform of Qi(t), which yields that Qi(t) ∈ APT(C̄Q
i , γ̄i) for some

C̄Q
i > 0.

The result of Theorem 2.4 in combination with suitable Tauberian theorems allows

us to describe the asymptotic tail behavior of Qi(t) and λi(t). In order to properly

take care of the constants that appear in the application of this theorem, we introduce,

for ⋆ ∈ {Q,λ}, the function R̄⋆,δ
ij (·) through

R⋆,δ
ij (u) = Γ(1− δ)R̄⋆,δ

ij (u). (2.54)

Note that R̄⋆,δ
ij (u) satisfies Eqn. (2.46) without the ωi term. We can then rewrite

Eqn. (2.53) as

E
[
zQi(t)

]
− 1 + (1− z)E[Qi(t)] ∼ −(1− z)γ̄iΓ(1− γ̄i)

∑
j∈Ii

λj

∫ t

0

R̄Q,γ̄i
ij (u)du.

Corollary 2.1. Fix i ∈ [d] and t ∈ R+. Assume that γ̄i ∈ (1, 2). Then, as x→ ∞,

P(Qi(t) > x) ∼

(∑
j∈Ii

λj

∫ t

0

R̄Q,γ̄i
ij (u) du

)
x−γ̄i ,

P(λi(t) > x) ∼

(∑
j∈Ii

λj

∫ t

0

R̄λ,γ̄i
ij (u) du

)
x−γ̄i .

(2.55)
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An interesting special case of Theorem 2.4, and Corollary 2.1, concerns the situation

in which the Hawkes graph is irreducible, i.e., the case where there exists a directed

path between every pair of vertices. Theorem 2.4 then implies that all components

Qi(t) and λi(t), i ∈ [d], inherit the minimum γ = mini,j∈[d]{γij}, i.e., all components

Qi(t) and λi(t) are APT with tail index γ.

Remark 2.5. In the setting of Theorem 2.4, we have assumed γ̄i ∈ (1, 2). In case γ̄i ∈
(m,m+1) for some m ∈ {2, 3, . . .}, a similar analysis can be performed, but additional

terms are to be included in the expansions of (2.49). The statement that Qi(t) and

λi(t) are APT with tail index γ̄i carries over. While the proof is conceptually analogous

to the case of γ̄i ∈ (1, 2), various expressions that will appear in the corresponding proof

are substantially more involved.

Remark 2.6. We conclude this subsection with a remark on extensions to cases in

which some of the jump size distributions are not of APT type. Following Definition

2.6, we have assumed that the Bij are either of APT type or identical to 0, for a

transparent exposition. At the expense of additional notation and administration in

the proof, also the cases that some of the Bij are identical to a positive constant bij
can be covered. Likewise, using a similar but more cumbersome treatment, one can

also handle the situation in which, besides the dominant jump sizes Bij of APT type,

there are light-tailed jump sizes as well.

2.5.3 The tail index is a class property

To fully appreciate how the chain structure of the Hawkes graph is reflected in the tail

indices of Qi(t) and λi(t), i ∈ [d], this subsection systematically studies this feature,

starting by revisiting the two examples discussed earlier. We focus primarily on Qi(t);

the analysis for λi(t) is analogous.

Proposition 2.2. For i ∈ [d] in a given class of the Hawkes graph, all P(Qi(t) > x)

have the same tail index, i.e., the tail index is a class property.

Proof. The proof follows from Theorem 2.4, in particular, from the role played by δij
in the proof of that theorem.

The following somewhat more elaborate example demonstrates how in general to

iteratively compute the tail indices corresponding to the individual classes.

Example 2.3 (Hawkes graph). In this example, we consider a system of 6 states

such that the vertex set V = {Q1, . . . , Q6} and the directed edges E are drawn below.
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2.5 Tail Probabilities

Q1 Q2 Q3

Q4 Q5 Q6

e21

e11

e32

e33

e23
e14

e54

e45

e36

e66

The different colors (drawing styles) represent the class each vertex belongs to. Observe

that there are three transient classes, viz. green (G, solid), cyan (C, dashed-dotted) and

blue (B, dotted), and one recurrent class, viz. red (R, dashed). We start by determin-

ing the tail index of the transient class that is the ‘furthest away’ from the recurrent

class, viz. C. This class has distance 2 to the recurrent class, as one has to go through

another transient class to reach the recurrent class. In evident notation,

γC = γ̄4 = γ̄5 = min{γ45, γ54}.

We proceed with the transient classes with distance 1 to the recurrent class, i.e., G and

B, and find

γG = γ̄1 = min{γC, γ14, γ11} = min{γ54, γ45, γ14, γ11},
γB = γ̄6 = γ66.

We finally determine the tail indices of the recurrent classes. In this case, there is just

one recurrent class, viz. R:

γR = γ̄2 = γ̄3 = min{γG, γB, γ21, γ36, γ32, γ23, γ33}
= min{γ45, γ54, γ14, γ11, γ66, γ21, γ36, γ32, γ23, γ33}.

2.5.4 The asymptotic behavior of linear combinations

In the above, we have focused on the asymptotic (marginal) tail behavior of the i-th

components Qi(t) and λi(t). To gain insight into the corresponding joint asymptotic

behavior, we now consider the tail behavior of ⟨c,Q(t)⟩ for some c ∈ Rd
+, where ⟨x,y⟩

denotes the inner product. As before, the case ⟨c,λ(t)⟩ can be dealt with analogously.

For convenience, we do so for the case that the Hawkes graph is irreducible; the case

that the Hawkes graph is not irreducible can be addressed as well, but its analysis is

somewhat cumbersome and mechanical, as it requires distinguishing various cases.

As demonstrated above, in the irreducible case, γ̄i = γ for all i ∈ [d]. Likewise, also

the set Ii does not depend on i, and is therefore denoted simply by I.
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Chapter 2 Multivariate Hawkes Population Processes

Proposition 2.3. Fix t ∈ R+ and c ∈ Rd
+. Let the Hawkes graph be irreducible.

Assume γ ∈ (1, 2). Then, ⟨c,Q(t)⟩ ∈ APT(Ĉ, γ) for some Ĉ > 0. More precisely,

E
[
z⟨c,Q(t)⟩

]
− 1 + (1− z)E

[
⟨c,Q(t)⟩

]
∼ −(1− z)γ

d∑
i=1

cγi
∑
j∈I

λj

∫ t

0

RQ,γ
ij (u) du,

(2.56)

as z ↑ 1. The first moment equals

E
[
⟨c,Q(t)⟩

]
=

d∑
j=1

λj

∫ t

0

d∑
i=1

ciR
Q
ij (u) du.

Proof. The proof follows the lines of the proof of Theorem 2.4; we therefore omit

the details. One has to properly take care of the multivariate setting when taking

expansions and equating linear and fractional order terms. Due to irreducibility, the

term of order γ effectively propagates throughout the system.

Proposition 2.3 can be used to determine the asymptotic tail behavior of ⟨c,Q(t)⟩
analogous to Corollary 2.1: under the assumptions of Proposition 2.3, as x → ∞, we

have that

P(⟨c,Q(t)⟩ > x) ∼

(
d∑

i=1

cγi
∑
j∈I

λj

∫ t

0

R̄Q,γ
ij (u) du

)
x−γ. (2.57)

2.6 Numerical Examples

This section provides a collection of numerical examples to illustrate the results derived

in the previous sections. All the numerical computations in this section are conducted

in Python and the computer code is available from the authors upon request. The first

part of this section focuses on the exact analysis. The characterization of the joint

transform in Theorem 2.1 and the fixed-point representation and convergence results in

Theorems 2.2–2.3 enable us to numerically compute arbitrary joint moments of Ni(t),

Qi(t) and λi(t), for any i ∈ [d] and t ∈ R+, using standard numerical techniques. The

second part of this section considers the asymptotic analysis. The characterization

of the heavy-tailed asymptotic behavior of Qi(t) and λi(t) in Theorem 2.4 allows us

to numerically evaluate their tail probabilities. For both the exact and asymptotic

analyses, we compare our numerically evaluated results to Monte Carlo simulated

counterparts. Our simulation procedure is based on Ogata’s [63] thinning algorithm

(see also [60, Algorithm 1.21] for details), which in our general multivariate setting

essentially relies on the cluster representation in Definition 2.2. Once a sample path
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of N (t) has been simulated for some t ∈ R+, one can easily obtain the corresponding

λ(t) andQ(t). The simulation procedure is, in principle, elementary, but can be highly

time consuming when t ∈ R+ is large, in the presence of heavy tails, or when a high

level of precision is pursued. By contrast, the numerical evaluation of our exact and

asymptotic results is nearly instantaneous.

Because our results allow for general decay functions gij(·), we illustrate two ex-

amples of parameterizations, namely exponential and power-law decay. Through-

out this section, we consider the bivariate case d = 2. In the instances consid-

ered, we let the stability condition be satisfied, i.e., the spectral radius of the matrix

∥H∥ = (∥hij∥)i,j∈[2] is smaller than 1, which results in the condition

(1− ∥h11∥)(1− ∥h22∥) > ∥h12∥∥h21∥. (2.58)

The stability condition (2.58) implies that the processes Ni(t), Qi(t) and λi(t) converge

to a steady state as t grows.

2.6.1 Exact analysis

We focus attention on the processes Q(t) = (Q1(t), Q2(t)) and λ(t) = (λ1(t), λ2(t))

and illustrate the joint transform characterization of (Q(t),λ(t)) under both exponen-

tial and power-law decay. More specifically, by means of a standard finite difference

method, we approximate the derivatives of the joint transform JQ,λ(t) obtained by

relying on the fixed-point characterization of Theorems 2.1–2.3, so as to numerically

evaluate arbitrary joint moments. We focus on moments corresponding to the first

components, i.e.,

E[Q1(t)] = E[Q1(t) |Q1(0) = 0], E[λ1(t)] = E[λ1(t) |λ1(0) = λ1],

and associated variances, as well as the joint moments E[Q1(t)Q2(t)] and E[Q1(t)λ1(t)].

Recall that the departures of events in Qi(t) are governed by the non-negative random

variable Ei, distributed as an exponential random variable with parameter µi > 0.

Exponential

We let the decay functions gij(·), with i, j ∈ [2], be of exponential form. In our

bivariate setting, we assume

g11(t) = g12(t) = e−α1t, g21(t) = g22(t) = e−α2t, (2.59)

for α1, α2 > 0. Further, in this example we take the random variables Bij to be positive

constants, i.e., Bij ≡ bij ∈ R+. This yields, for i, j ∈ [2], that ∥hij∥ = bij/αi, and
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Figure 2.2. Plots of the expectations and variances of Q1(·) and λ1(·) and the joint mo-

ments E[Q1(t)λ1(t)] and E[Q1(t)Q2(t)] (solid lines), compared to Monte Carlo simulated av-

erages (dashed lines), in the bivariate model (d = 2) under exponential decay, with t ∈ [0, 10].

Parameters: λ1 = λ2 = 0.5, µ1 = µ2 = 2, α11 = α12 = 2.3, α21 = α22 = 2, B11 ≡ 1.3,

B12 ≡ 0.6, B21 ≡ 0.8, B22 ≡ 0.5.
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we will select parameters such that the bivariate stability condition in Eqn. (2.58) is

satisfied.

In Figure 2.2, we plot the expectations E[Q1(t)] and E[λ1(t)], the variances Var[Q1(t)]

and Var[λ1(t)], and the joint moments E[Q1(t)λ1(t)] and E[Q1(t)Q2(t)], obtained from

the fixed-point characterization. These are plotted against their Monte Carlo simu-

lated counterparts based on M = 105 runs, for t ∈ [0, 10]. In all cases, the numerical

evaluation of our exact results closely matches the Monte Carlo simulated counter-

parts. Around t = 6, the effect of the initial state has vanished, in that the processes

enter the stationary regime. We note that the CPU time associated with the exact

results is negligible compared to the CPU time required for the simulation results.

Furthermore, for large t, the exact results remain smooth while the simulation results

become a little rougher.

Power

We next let the decay functions gij(·), with i, j ∈ [2], be of power-law type. In

particular, we take

g11(t) = g12(t) =
1

(c1 + t)p1
, g21(t) = g22(t) =

1

(c2 + t)p2
, (2.60)

where c1, c2 > 0 and p1, p2 > 1 to ensure integrability. Again taking Bij ≡ bij ∈ R+,

we now have ∥hij∥ = bijc
1−pi
i (pi−1)−1. As before, we choose the parameters such that

the bivariate stability condition in Eqn. (2.58) is satisfied.

Figure 2.3 displays the expectations E[Q1(t)] and E[λ1(t)], the variances Var[Q1(t)]

and Var[λ1(t)], as well as the joint moments E[Q1(t)λ1(t)] and E[Q1(t)Q2(t)], plotted

against their Monte Carlo simulated counterparts. We observe again a highly accurate

match. We note that, compared to the case of exponential decay, it now takes longer

for the processes to reach the stationary regime. This is due to the fatter tails of

power-law decay: heuristically, the processes now ‘have more memory’.

2.6.2 Asymptotic analysis

We proceed by numerically illustrating our asymptotic results on the tail probabilities

ofNi(t), as established in Corollary 2.1. In particular, we compute the R̄N ,δ
ij (·),function

appearing in Corollary 2.1 and the corresponding tail probability approximations, and

compare these to tail probabilities estimated using Monte Carlo simulation.

In our specific bivariate example, we consider only one direction of cross-excitation

and one heavy-tailed random variable. More precisely, we set B11 ≡ 0, B21 ≡ 0,

B12 = 1 and assume B22 ∈ APT(1, γ) with γ = 1.8, such that this system can be

represented by the following Hawkes graph:

49



Chapter 2 Multivariate Hawkes Population Processes

Figure 2.3. Plots of the expectations and variances of Q1(·) and λ1(·) and the joint mo-

ments E[Q1(t)λ1(t)] and E[Q1(t)Q2(t)] (solid lines), compared to Monte Carlo simulated av-

erages (dashed lines), in the bivariate model (d = 2) under power-law decay, with t ∈ [0, 20].

Parameters: λ1 = λ2 = 1, µ1 = µ2 = 1.5, c1 = 1.5, c2 = 2, p1 = 2.5, p2 = 3, B11 ≡ 1.5,

B12 ≡ 0.5, B21 ≡ 1, B22 ≡ 0.5.
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N1 N2

e12

e22

The index γ of the heavy-tailed random variable B22 is inherited by both N1(·) and

N2(·). In this setting, we compute the functions RN
ij (·) and R̄N ,γ

ij (·), with i, j ∈ [2],

using the system of equations of their Laplace transforms given in Eqns. (2.47), (2.48)

and (2.54). By solving this linear system and inverting back, we obtain RN
ij (·) at time

u by

RN
12(u) = E[B12]L−1

{ L{G12}(·)
1− E[B22]L{g22}(·)

}
(u),

RN
22(u) = L−1

{ L{1}(·)
1− E[B22]L{g22}(·)

}
(u),

(2.61)

where G12(u) =
∫ u

0
g12(v)dv. Note that RN

11(·) ≡ 1 by Eqn. (2.45) since B11 ≡ 0, and

RN
21(·) ≡ 0 by Lemma 2.4 as P2←1 = 0. In a similar manner, we obtain R̄N ,γ

ij (·) at time

u by

R̄N ,γ
12 (u) = L−1

{ L
{
(g22 ∗ R̄N

12)
γ
}
(·)

1− E[B22]L{g22}(·)

}
(u),

R̄N ,γ
22 (u) = L−1

{ L
{
(g22 ∗ R̄N

22)
γ
}
(·)

1− E[B22]L{g22}(·)

}
(u).

(2.62)

This allows us to compute the analytical expressions that appear in Corollary 2.1,

which in our bivariate setting are
∫ t

0
R̄N ,γ

12 (u)du and
∫ t

0
R̄N ,γ

22 (u)du for components

N1(t) and N2(t), respectively. We next discuss two parameterizations of the decay

functions to compute these terms explicitly.

Exponential

We choose our decay functions as in Eqn. (2.59), and select the remaining parameters

such that the stability condition (2.58) is satisfied. In Figure 2.4, we plot the analytical

expressions from Corollary 2.1 against the Monte Carlo simulation-based approxima-

tions of the tail probabilities P(N1(t) > x) and P(N2(t) > x) as x grows, for fixed t = 1.

The simulations are performed by samplingM = 2 ·106 runs of N (1) = (N1(1), N2(1))

and counting the proportion of these runs that lead to values larger than any given

threshold x. The number of simulation runs is chosen sufficiently large to obtain rea-

sonable estimates of small tail probabilities. As expected, we see that as x grows,

the simulation approximations of the tail probabilities converge toward the analytical

asymptotic expressions.
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Figure 2.4. Plots of the tail probabilities P(N1(t) > x) and P(N2(t) > x) for fixed t = 1

in the bivariate model (d = 2) under exponential decay, using the analytical expressions

appearing in Corollary 2.1 (solid lines), compared to Monte Carlo simulated approximations

(dashed lines). Parameters: λ1 = 0.5, λ2 = 1.5, α11 = α12 = α21 = α22 = 1.5, B11 ≡ 0,

B12 ≡ 1, B21 ≡ 0, B22 ∈ APT(1, 1.8).

Power

We now choose our decay functions as in Eqn. (2.60), and the remaining parameters

such that the stability condition (2.58) is satisfied. We substitute the decay functions

into (2.61) and (2.62), and compute the analytical expressions appearing in Corol-

lary 2.1. Figure 2.5 is the counterpart of Figure 2.4, but now for power-law decay.

We observe again that both Monte Carlo simulated approximations converge to the

analytical asymptotic expressions.

2.7 Conclusions

This paper has focused on multivariate Hawkes processes and associated population

processes, establishing both exact and asymptotic results. Importantly, we allow our

model to be non-Markovian, in that the processes’ decay functions can be chosen

generally. We have characterized their joint transform via a fixed-point theorem, by

exploiting suitable extensions of the existing results on cluster representations for

Hawkes processes and associated distributional equalities induced by the underlying

branching structure. For the case that the intensity jumps are heavy-tailed, we have

also succeeded in determining the corresponding asymptotic tail behavior.

A (partially) more general setting than that analyzed in our paper is provided by the
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Figure 2.5. Plots of the tail probabilities P(N1(t) > x) and P(N2(t) > x) for fixed t = 1 in

the bivariate model (d = 2) under power-law decay, using the analytical expressions appearing

in Corollary 2.1 (solid lines), compared to Monte Carlo simulated approximations (dashed

lines). Parameters: λ1 = 0.5, λ2 = 1.5, c1 = c2 = 1, p1 = 2.5, p2 = 3.5, B11 ≡ 0, B12 ≡ 1,

B21 ≡ 0, B22 ∈ APT(1, 1.8).

extensions of Hawkes processes introduced in [12], referred to as non-linear Hawkes

processes, and versatilely analyzed further in [70, 74, 77]. Then, the form of the

intensity process is governed by a general auxiliary function, rather than the additive

structure (2.3). Importantly, the cluster representation applies to the additive case

only. As a consequence, our results cannot be readily generalized to the non-linear

case, which will require an intrinsically different approach.

2.A Additional Proofs

Proof of Lemma 2.1. We start by considering a pair of matrix-valued processes

(X(·),Y (·)) =
(
Xij(·), Yij(·)

)
i,j∈[d]

and denote by X(i)(·) and Y(i)(·) the i-th rows of the respective matrices. We define a

mapping Φ acting on the space of such pairs of processes at time u by(
Xij(u), Yij(u)

)
i,j∈[d] 7→ Φ

(
(Xij(·), Yij(·))i,j∈[d]

)
(u) ≡ Φ

(
X,Y

)
(u),

=:
(
Aj{1{i=j}1{Ei>u},X(i)(·)}(u), Aj{Bijgij(u),Y(i)(·)}(u)

)
i,j∈[d],

(2.63)

where Aj is as defined in Eqn. (2.18). We note that the above mapping could be equiv-

alently expressed in terms of distribution functions of X(·) and Y (·). Now observe

53



Chapter 2 Multivariate Hawkes Population Processes

that the mapping in Eqn. (2.63) is the probabilistic analogue of the mapping ϕ given

in Eqn. (2.33). We can verify this, as the time-dependent joint transform J Φ(X,Y )(·)
is, at time u, due to Definition 2.4, explicitly given by

J Φ(X,Y )(u) =

JΦ1(X,Y )(u)
...

JΦd(X,Y )(u)

 , (2.64)

where each entry, for j ∈ [d] corresponding to the j-th column Φj(X,Y )(·), is given
by

JΦj(X,Y )(u) ≡ JΦj(X,Y )(u, s, z)

= E
[ d∏

i=1

z
Aj{1{i=j}1{Ei>u},X(i)(·)}(u)
i e−siAj{Bijgij(u),Y(i)(·)}(u)

]
.

(2.65)

Mimicking the steps of the proof of Theorem 2.2, we derive that the right-hand side

of Eqn. (2.65) equals ϕj(JX,Y )(u). Therefore, the joint transform of Φj(X,Y )(·)
satisfies JΦj(X,Y )(·) = ϕj(JX,Y )(·) ∈ J. Since this holds for every entry j ∈ [d], we

have that ϕ(JX,Y )(·) ∈ Jd.

Proof of Lemma 2.2. Let J (·), J̃ (·) ∈ Jd and ϵ > 0. We will show that for a certain

choice of δ > 0, we have

∥J − J̃ ∥Jd < δ =⇒ ∥ϕ(J )− ϕ(J̃ )∥Jd < ϵ.

It suffices to prove continuity in each entry separately. Considering the j-th entry of

ϕ, which is the mapping ϕj defined in (2.33), observe that it can be rewritten as

ϕj(J1, . . . ,Jd)(u, s, z) = E
[
z
1{Ej>u}

j

]
×

d∏
m=1

E
[
exp

(
−Bmj

(
smgmj(u) +

∫ u

0

gmj(v)
(
1− Jm(u− v, s, z))dv

))]
.

We then have

∥ϕj(J )− ϕj(J̃ )∥2J (2.66)

= sup
u,s,z

|ϕj(J )(u, s, z)− ϕj(J̃ )(u, s, z)|2

⩽ sup
u,s,z

∣∣∣E[ exp(− d∑
m=1

Bmj

(
smgmj(u) +

∫ u

0

gmj(v)
(
Jm(u− v, s, z)− 1)dv

))
− exp

(
−

d∑
m=1

Bmj

(
smgmj(u) +

∫ u

0

gmj(v)(J̃m(u− v, s, z)− 1)dv
))]∣∣∣2, (2.67)

54



2.A Additional Proofs

where we have used that |zj| ⩽ 1. We then apply the mean value theorem to the

difference of the exponential terms; for an exponential function, it states that ea−eb =
(a− b)ec for some c ∈ [a, b]. We have that

−
d∑

m=1

Bmj

(
smgmj(u) +

∫ u

0

gmj(v)
(
1− Jm(u− v, s, z)

)
dv
)
⩽ 0,

due to Jm(u − v, s, z) ⩽ 1, Bmj being non negative, s ∈ Rd
+ and gmj(v) ⩾ 0 by

assumption. The same holds for the terms involving J̃m. Hence, we can apply the

mean value theorem with some c ⩽ 0. We thus obtain the following upper bound on

(2.67):

sup
u,s,z

∣∣∣ d∑
m=1

E
[
Bmj

∫ u

0

gmj(v)(Jm(u− v, s, z)− J̃m(u− v, s, z))dv
]∣∣∣2, (2.68)

since the Bmjsmgmj(u) terms and the constants cancel. By an application of the

triangle inequality we can bound this expression further. Indeed, (2.68) is dominated

by

d∑
m=1

sup
u,s,z

E
∣∣∣Bmj

∫ u

0

gmj(v)
(
Jm(u− v, s, z)− J̃m(u− v, s, z)

)
dv
∣∣∣2

⩽
d∑

m=1

E[Bmj]
2 sup
u,s,z

∣∣∣ ∫ u

0

gmj(v)
(
Jm(u− v, s, z)− J̃m(u− v, s, z)

)
dv
∣∣∣2, (2.69)

where E[Bmj]
2 < ∞ by assumption. Finally, this term can be bounded by applying

Young’s inequality for convolutions, which yields that (2.69) is dominated by

d∑
m=1

E[Bmj]
2 sup
u,s,z

∣∣∣ ∫ u

0

gmj(v)ds

∫ u

0

(
Jm(v, s, z)− J̃m(v, s, z)

)
dv
∣∣∣2

⩽ d max
m,j∈[d]

E[Bmj]
2
∣∣∣ ∫ t

0

gmj(v)dv
∣∣∣2 sup

u,s,z

∣∣∣ ∫ u

0

(
Jm(v, s, z)− J̃m(v, s, z)

)
dv
∣∣∣2

⩽ d max
m,j∈[d]

E[Bmj]
2∥gmj∥2L1(R+)tδ

2,

(2.70)

where ∥gmj∥2L1(R+) = (
∫∞
0
gmj(v)]dv)

2 < ∞ and |Jm(v, s, z) − J̃m(v, s, z)| < δ by

assumption, in combination with the standard inequality
∑d

m=1 ai ⩽ dmaxi∈[d]{ai}
for real numbers ai. Hence, choosing δ as

δ2 =
ϵ

td2 max
m,j∈[d]

E[Bmj]2∥gmj∥2L1(R+)

,
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implies that (2.66) becomes ∥ϕj(J ) − ϕj(J̃ )∥2J ⩽ ϵ2. Doing this for all j ∈ [d] yields

the result.

Of course, for the proof of Lemma 2.2 to work, we need t > 0, E[Bmj] > 0 and

gmj ̸= 0 for at least some combination of m, j ∈ [d]. However, it is clear that choosing

all of these to be 0 yields an irrelevant model.

Proof of Lemma 2.4. (i) ⇒ (iii). We have that E[SQ
i←j(u)] > 0 implies that P(SQ

i←j(u) >

0) is a positive probability, implying that a path must exist from component j to i,

which proves the result immediately.

(iii) ⇒ (i). Using the distributional equality of SQ
i←j(u), as given in (2.19), we have

E[SQ
i←j(u)] = 1{i=j}P(Ei > u) +

d∑
m=1

E[Bmj]

∫ u

0

gmj(v)E[SQ
i←m(u− v)]dv. (2.71)

If Pi←j = 1, then the path must start with an edge ekj, for some k ∈ [d] and so

E[Bkj] > 0 by definition. If k = i, then E[Bij] > 0 and so this direct link implies

E[SQ
i←j(u)] > 0. If k ̸= i, then we apply Eqn. (2.71) to E[SQ

i←k(u− v)] on the RHS to

obtain the next edge along the path. Iterating this procedure for the non-zero terms

on the RHS, we obtain a path from component j to i, proving that E[SQ
i←j(u)] > 0.

(i) ⇔ (ii). We can use the same argument, now for λ. We have that E[Sλ
i←j(u)]

satisfies

E[Sλ
i←j(u)] = E[Bij]gij(u) +

d∑
m=1

E[Bmj]

∫ u

0

gmj(v)E[Sλ
i←m(u− v)]dv, (2.72)

due to the distributional equality for Sλ
i←j(u) that is stated in (2.19). A similar rea-

soning as above yields the result.
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Abstract

In this paper, we establish a large deviations principle for a multivariate compound process 
induced by a multivariate Hawkes process with random marks. Our proof hinges on showing 
essential smoothness of the limiting cumulant of the multivariate compound process, resolving 
the inherent complication that this cumulant is implicitly characterized through a fixed-point 
representation. We employ the large deviations principle to derive logarithmic asymptotic 
results on the marginal ruin probabilities of the associated multivariate risk process. We 
also show how to conduct rare event simulation in this multivariate setting using importance 
sampling, and prove the asymptotic efficiency of our importance sampling based estimators. 
The paper is concluded with a systematic assessment of the performance of our rare event 
simulation procedure.

Chapter 3
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Chapter 3

Multivariate Compound Hawkes

Processes: Large Deviations and Rare

Event Simulation

3.1 Introduction

Mutually exciting processes, or multivariate Hawkes processes ([45, 47]), constitute

an important class of point processes, particularly suitable to describe stochastic de-

pendences among occurrences of events across time and space. Due to their built-in

feedback mechanism, they are a natural contender to model contagious phenomena

where clusters of events occur in both the temporal and spatial dimensions. Over the

past decades, Hawkes processes have been increasingly applied across a broad variety

of fields, such as finance ([2, 3, 6, 48]), social interaction ([17]), neuroscience ([65]),

seismology ([64, 49]), and many others.

The key property of a Hawkes process is that it exhibits ‘self-exciting’ behavior:

informally, any event instantaneously increases the likelihood of, hence potentially

triggers, additional future events. A crucial element in its definition is the so-called

decay function that quantifies how quickly the effect of an initial event on future

events vanishes. Choosing this function to be exponential renders the model Marko-

vian, which facilitates the explicit evaluation of various relevant risk and performance

metrics (e.g., transient and stationary moments). In practical applications, however,

it can be more natural to allow for other, i.e., not necessarily exponential, decay func-

tions admitting non-Markovian, and long-memory, properties but making the analysis

substantially more challenging; see, e.g., [35, 59] who indicate the relevance of non-

Markovian models in describing contagious phenomena.

In applied probability and mathematical risk theory, Hawkes processes have been

used to model the claim arrival process, and, likewise, compound Hawkes processes
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to model the associated cumulative claim process that an insurance firm is facing; see

the related literature discussed in detail below. In collective risk theory, multivariate

Hawkes processes provide an appealing candidate for modeling, for example, the claim

arrival process associated with technological risks; see, e.g., [8] who apply the contagion

model of [2] to model cyber attacks and also [9]. Bearing in mind that ruin and

exceedance probabilities ought to be kept small, a primary research goal concerns

their analysis in the asymptotic regime in which the initial reserve level of the insurer

or the time horizon of aggregation grows large, such that the event of interest becomes

increasingly rare. This explains the interest in deriving large deviations principles

for (compound) Hawkes processes, providing a formal tool to assess their rare event

behavior, and facilitating in particular the identification of the asymptotics of ruin

and exceedance probabilities. At the same time, it is noted, however, that large

deviations results usually yield rough, logarithmic asymptotics only, in that they focus

on identifying the associated decay rate. To remedy this, one could attempt to develop

‘large deviations informed’ simulation techniques by which rare events can be evaluated

fast and accurately. This is particularly useful when the probabilities of rare events

are too small to be estimated with reasonable accuracy using regular Monte Carlo

simulations.

Whereas large deviations for univariate Hawkes processes are well understood, their

multivariate counterpart is to a large extent unexplored. In this context, we mention

[73], which considers a broad class of multivariate affine processes of Markovian type,

covering the special case of the multivariate Hawkes process with an exponential decay

function; see also [42] for refinements. In addition, a moderate deviations result has

been derived in [72]. To the best of our knowledge, however, large deviations principles

for multivariate compound Hawkes processes allowing for general decay functions have

not been established, and in addition, no rare event simulation techniques have been

developed in this setting. These are the main subjects of this paper.

In the univariate case, large deviations results for compound Hawkes processes

with general decay function have been derived in [69] building on [11]. The underlying

argumentation relies on the cluster representation of the driving Hawkes process, as

developed in the seminal work [47], from which it is concluded that the cluster size

follows a so-called Borel distribution. A crucial element in proving the large deviations

principle lies in showing that the limiting cumulant of the random object under study

is steep, entailing that its derivative grows to infinity when approaching the boundary

of its domain, such that the Gärtner-Ellis Theorem can be invoked. In the univariate

(compound) Hawkes case considered in [69], steepness could be established by using the

explicit expression for the cluster size distribution. When studying large deviations for

multivariate (compound) Hawkes processes, however, a main technical difficulty that
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arises is that the cluster size distribution of the process is not known in closed form.

In the multivariate setting, all one has is a vector-valued fixed-point representation

for the limiting cumulant of the (multivariate) cluster size, as was derived in [55].

Importantly, this relation does not allow the closed-form identification of the limiting

cumulant (let alone that one can find the distribution itself), entailing that one cannot

explicitly characterize the boundary of its domain.

In light of the gaps in the literature described above, the contributions of this paper

are the following.

◦ First, we establish a large deviations principle for multivariate compound Hawkes

processes allowing for general decay functions. We also allow the Hawkes pro-

cess to be marked, such that the intensity process experiences jumps of random

size. We have succeeded in establishing steepness based on an implicit fixed-

point representation for the limiting cumulant of the joint cluster size distribu-

tion. Specifically, without having an explicit expression for the limiting cumu-

lant, and without having an explicit characterization of its domain, we prove

that the derivative of the limiting cumulant grows to infinity when approaching

the boundary of its domain. This steepness property facilitates the use of the

Gärtner-Ellis Theorem, so as to establish the desired large deviations principle.

The mathematical details of the required multivariate analysis are involved.

◦ Second, we characterize the asymptotic behavior of the ruin probability for the

marginal ruin processes in the regime that the initial reserve level grows large.

We prove that this ruin probability decays essentially exponentially, with the

corresponding decay rate being equal to the unique zero of the limiting cumulant

pertaining to that marginal. The proof of the lower bound on the decay rate is

a direct application of our large deviations principle for multivariate compound

Hawkes processes. The corresponding upper bound is established by a time-

discretization argument, a union bound, and by showing that one can neglect

the contributions to the resulting sum due to small and large time scales, in

combination with frequent use of the well-known Chernoff bound.

◦ Third, we develop an importance sampling algorithm for estimating rare event

probabilities in our multivariate setting. More precisely, we first derive the pa-

rameters of the exponentially twisted multivariate Hawkes process. The twisted

marginal ruin process has positive drift, yielding ruin with probability one under

the new measure, but with the likelihood ratio being bounded by a function

that decays exponentially in the initial reserve, thus leading to a considerable

speedup in importance sampling relative to regular Monte Carlo simulation. We
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prove that this estimator is, in fact, asymptotically efficient in the sense of Sieg-

mund ([68]), in passing also establishing a Lundberg-type upper bound on the

ruin probability. In addition, we devise an asymptotically efficient importance

sampling algorithm for estimating the probability of the multivariate compound

Hawkes process (at a given point in time, that is) attaining a rare large value.

The attainable speedup, relative to regular Monte Carlo simulation, is quantified

through a series of simulation experiments.

Without attempting to provide an exhaustive overview, we now review a few rele-

vant related papers, all of which focus on the univariate setting. We already mentioned

[69], which analyzes the asymptotic behavior of ruin probabilities, under the assump-

tion of light-tailed claims, drawing upon earlier large deviations results derived in [11]

for more general Poisson cluster processes. Furthermore, in [69], an importance sam-

pling based algorithm is proposed that is capable of efficiently generating estimates of

the rare event probabilities of interest. In [54], the limiting cumulant of the cluster

size distribution is implicitly characterized for the setting with random marks using a

fixed-point argument, while proving a large deviations principle using the Gärtner-Ellis

theorem for the upper bound and an exponential tilting method for the lower bound.

Where the contributions above focus primarily on the case of light-tailed claims, subex-

ponentially distributed claims are studied in [74], in the context of a non-stationary

version of the Hawkes process. For (non-compound) Hawkes processes (i.e., not in-

volving claims), ‘precise’ large deviations results, providing asymptotics beyond the

leading order term, are obtained in [43]. The setting of a large initial intensity is

studied in [40] and [41]. For the more general class of non-linear Hawkes processes,

[76] proves the process-level large deviations, and [77] derives large deviations in the

Markovian setting.

The rest of this paper is organized as follows. In Section 3.2, we introduce the rele-

vant processes and discuss some basic properties that are used throughout the paper.

Section 3.3 derives results on the transform of the joint cluster size distribution, and

provides an implicit characterization of the domain of the limiting cumulant. Sec-

tion 3.4 then establishes the large deviations principle for the multivariate compound

Hawkes process with general decay function and random marks. In Section 3.5, we

consider the associated multivariate risk process, with the objective to characterize the

decay rate of the marginal ruin probability. Then, in Section 3.6, we exploit the large

deviations principle to develop an importance sampling algorithm to efficiently esti-

mate rare event probabilities. Section 3.7 numerically demonstrates the performance

of our importance sampling based estimators. Concluding remarks are in Section 3.8.

Some auxiliary proofs are relegated to the Appendix.
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3.2 Multivariate Compound Hawkes Processes

In this section, we first provide the definitions of multivariate Hawkes and compound

Hawkes processes, and next introduce some objects and discuss some properties that

are relevant in the context of this paper. Throughout, we use the boldface notation

x = (x1, . . . , xd)
⊤ to denote a d-dimensional vector, for a given dimension d ∈ N.

Inequalities between vectors are understood componentwise, e.g., x > y means xi > yi
for all i = 1, . . . , d.

Consider a d-dimensional càdlàg counting process N (·) ≡ (N (t))t∈R+ , where each

incrementNi(t)−Ni(s) records the number of points in component i ∈ [d] := {1, . . . , d}
in the time interval (s, t], with s < t. We label the points by considering, for each

j ∈ [d], a sequence of a.s. increasing positive random variables Tj = {Tj,r}r∈N =

{Tj,1, Tj,2, . . . } representing the event times. We associate to this sequence the one-

dimensional counting process Nj(·) by setting

Nj(t) := NTj
(0, t] =

∞∑
r=1

1{Tj,r≤t}.

The process N (·) = (N1(·), . . . , Nd(·))⊤ is then the d-dimensional counting process

associated with the sequences of event times in all components, T1, . . . ,Td, compactly

denoted by N (t) = NT (0, t]. Throughout, the points will be referred to as events and

the terms point process and counting process are used interchangeably for N (·). We

assume that the point process starts empty, i.e., N (0) = 0 = (0, . . . , 0)⊤.

In the original work [45], the Hawkes process is defined by relying on the concept of

the conditional intensity function. An alternative, equivalent definition, known as the

cluster process representation, can be given by representing the Hawkes process as a

Poisson cluster process; it was first described in [47] in the setting of the conventional

univariate Hawkes process, see also [23, Example 6.3(c)] and [60, Ch. IV]. The clus-

ter process representation distinguishes between two types of events: first, there are

immigrant events generated according to a homogeneous Poisson process with a given

rate; and second, there are offspring events generated by an inhomogeneous Poisson

process with rates that account for self-excitation and, in the multivariate context also,

cross-excitation. In the following, we introduce the relevant terminology and provide

a formal definition of the process.

For j ∈ [d], we consider base rates λj ⩾ 0, with at least one of the base rates being

strictly positive. For each combination i, j ∈ [d], we let the decay function gij(·) :

R+ → R+ be non-negative, non-increasing, and integrable. Also, for j ∈ [d], we define

the random marks through the generic non-negative, non-degenerate random vector

Bj = (B1j, . . . , Bdj), asserting that the sequence of random marks {Bj,r}r∈N consists
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of i.i.d. random vectors that are distributed asBj. We allow the random variables Bij,r

to be dependent for fixed j and r. Finally, we let Kij(·) be an inhomogeneous Poisson

process with intensity Bij,r gij(·), given the value of Bij,r. With these elements in place,

the following definition describes the cluster process representation for a multivariate

Hawkes process.

Definition 3.1 (multivariate Hawkes process). Define a d-dimensional point process

N (·) componentwise by Nj(t) = NTj
(0, t] for j ∈ [d] and t > 0, where the sequences of

event times T1, . . . ,Td are generated as follows:

(i) First, for each j ∈ [d], let there be a sequence of immigrant event times {T (0)
j,r }r∈N

on the interval (0,∞) generated by a homogeneous Poisson process Ij(·) with rate

λj.

(ii) Second, let each immigrant event independently generate a d-dimensional cluster

Cj ≡ C
T

(0)
j,r
, consisting of event times associated with generations of events:

(a) The immigrant with event time T
(0)
j,r is labeled to be of generation 0 and into

each component m ∈ [d], it generates a sequence of first-generation event

times {T (1)
m,r}r∈N on the interval (T

(0)
j,r ,∞), according to Kmj(· − T

(0)
j,r ) with

Bmj,r the random mark associated to T
(0)
j,r .

(b) Iterating (a) above, with T
(n−1)
m,r designating the r-th event time of generation

n − 1 in component m ∈ [d], yields generation n event times {T (n)
l,r }r∈N

in component l ∈ [d] on the interval (T
(n−1)
m,r ,∞), generated according to

Klm(· − T
(n−1)
m,r ).

Upon taking the union over all generations, we obtain, for each component j ∈ [d],

Tj = {Tj,r}r∈N =
∞⋃
n=0

{T (n)
j,r }r∈N.

The process N (·) defined above for t > 0 and with N (0) = 0 constitutes a multivariate

Hawkes process.

To ensure that the clusters described in part (ii) of Definition 3.1 are a.s. finite,

we assume that a stability condition applies throughout this paper. It is shown in

[45] that this stability condition guarantees non-explosiveness of N (·), see also [23,

Example 8.3(c)].

Assumption 3.1. Assume that the matrix H := (hmj)m,j∈[d] with elements

hmj := E[Bmj]cmj, (3.1)

with cmj =
∫∞
0
gmj(v) dv, has spectral radius strictly smaller than 1.
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We next define the multivariate compound Hawkes process as follows. Let d⋆ ∈ N
be fixed and note that we allow d ̸= d⋆. Let {Uj,r}r∈N = {(U1j,r, . . . , Ud⋆j,r)

⊤}r∈N be a

sequence of non-negative, non-degenerate i.i.d. random vectors of length d⋆, for each

j ∈ [d]. We allow the random variables Uij,r to be dependent for fixed j and r.

Definition 3.2 (multivariate compound Hawkes process). Define the process Z(·) :=
(Z1(·), . . . , Zd⋆(·))⊤ for each component Zi(·) with i ∈ [d⋆] by

Zi(t) :=
d∑

j=1

Nj(t)∑
r=1

Uij,r, t > 0, (3.2)

where Uj,r = (U1j,r, . . . , Ud⋆j,r)
⊤ is drawn independently for every event in Nj(t), with

j ∈ [d]. The process Z(·) defined above for any t > 0 constitutes a multivariate

compound Hawkes process.

If we define the random matrix U ∈ Rd⋆×d
+ as

U ≡
[
U1, . . . ,Ud

]
:=


U11 U12 . . . U1d

U21 U22 . . . U2d

...
...

. . .
...

Ud⋆1 Ud⋆2 · · · Ud⋆d

 , (3.3)

we can represent Eqn. (3.2) in vector-matrix form by

Z(t) = N (t) ⋆U :=
d∑

j=1

Nj(t)∑
r=1

Uj,r, (3.4)

where ⋆ denotes the compound sum operation.

We proceed with a brief discussion of the dimensionality of the objects appearing

in Definition 3.2. The Hawkes process N (·) is of dimension d and the random vectors

Uj are of dimension d⋆, which results in the compound Hawkes process Z(·) being also

of dimension d⋆. This reflects that the random variables of the type Uij, with i ∈ [d⋆]

and j ∈ [d], can be interpreted as the effect that an event in the j-th component of the

Hawkes process N (·) has on the i-the component of the compound Hawkes process

Z(·). As stated before, we allow d ̸= d⋆. Intuitively, for instance, in the context of

insurance, this means that the number of risk drivers may be larger (d > d⋆) or smaller

(d < d⋆) than the number of insurance product categories.

We now introduce some objects related to the cluster process representation that

are relevant for later analysis. Recall that for each immigrant in component j ∈ [d],

the d-dimensional cluster Cj from Definition 3.1 contains the sequences of event times
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in each component that have the immigrant with event time T
(0)
j,r as oldest ancestor.

We associate to Cj the d-dimensional cluster point process Sj(·), by setting

Sj(u) := SCj
(0, u], (3.5)

such that it counts the number of events of Cj on the interval (0, u], where u =

t−T (0)
j,r > 0 is the remaining time after the arrival of the immigrant event. Concretely,

we have

Sj(u) :=

S1←j(u)
...

Sd←j(u)

 , (3.6)

where each entry Si←j(u) records the number of events generated into component

i ∈ [d] in the cluster Cj, with as oldest ancestor the immigrant event in component

j that generated the cluster. To avoid double counts, we let the immigrant itself be

included in the cluster (only) when i = j.

If we let u tend to infinity, the entries of the random vector Sj(u) ultimately count

the total number of events within the clusterCj generated into each component i ∈ [d].

Observe that u 7→ Sj(u) is increasing componentwise and supu∈R+
∥Sj(u)∥Rd < ∞

with probability 1 due to Assumption 3.1. Hence, we can define a random vector that

counts the total number of events in all components, or simply cluster size, by setting

Sj := limu→∞ Sj(u), where convergence is understood in the a.s. sense.

One can interpret these clusters in terms of d-type Galton-Watson processes, where

the total progeny equals the sum of all generations of offspring that descend from one

individual ([51]). Suppose the Galton-Watson process starts with an individual of type

j ∈ [d], and let S
(k)
j denote the k-th generation of descendants. Then one can write

Sj =
∞∑
k=0

S
(k)
j , (3.7)

where S
(0)
j = ej, the unit vector (i.e., with j-th entry equal to 1, and other entries

equal to 0). In [51], the total progeny, i.e. cluster size, of such a process is analyzed

in the one-dimensional setting and shown to have a so-called Borel distribution. For

higher-dimensional Hawkes processes, by using [15, Theorem 1.2], it is, in principle,

also possible to derive a representation of the multivariate cluster size distribution.

However, the resulting expression is neither explicit nor workable for the goal at hand

due to (highly) convoluted sums that arise in the derivation. More specifically, the

multiplicity of the different possible sample paths to generate a certain number of

events in each component yields a complex combinatorial problem.
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We conclude this section by stating two convergence results that will be needed

later in this paper. Under the stability condition, we have that the Hawkes process

N (·) satisfies the following strong law of large numbers, as shown in [6]: as t → ∞,

we have

N (t)

t
→ (I −H)−1λ, (3.8)

a.s., where λ = (λ1, . . . , λd)
⊤. This result naturally extends to the corresponding

compound Hawkes process Z(·) (see [44, Theorem 1]): as t→ ∞, a.s.,

Z(t)

t
→ E[U ](I −H)−1λ. (3.9)

3.3 Transform Analysis

In this section, we discuss probability generating functions and moment generating

functions pertaining to the processes introduced in the previous section, viz. the mul-

tivariate Hawkes and compound Hawkes processes. These functions will play a pivotal

role when deriving large deviations results later in this paper.

It is directly seen from the definition of Z(t) that, for fixed t > 0, its moment gener-

ating function satisfies the following composite expression in terms of the probability

generating function of N (t):

mZ(t)(θ) ≡ E
[
eθ
⊤Z(t)

]
= E

[ d∏
l=1

(
mUl

(θ)
)Nl(t)

]
, (3.10)

where

mUl
(θ) ≡ E[eθ⊤Ul ] = E

[ d⋆∏
i=1

eθiUil

]
.

For now, we assume θ ∈ Rd⋆ is chosen such that (3.10) exists—we will further discuss

the domain of convergence below. We are interested in the limiting cumulant of Z(t)

as t→ ∞, that is, we wish to analyze the limiting cumulant

lim
t→∞

1

t
logmZ(t)(θ). (3.11)

To derive an expression for (3.11), we use a characterization of the probability

generating function of N (t) in terms of the cluster point processes Sj(u), obtained

in [55, Theorem 1]:

E
[ d∏

l=1

z
Nl(t)
l

]
=

d∏
j=1

exp
(
λj

∫ t

0

(
E
[ d∏

l=1

z
Sl←j(u)

l

]
− 1
)
du
)
, (3.12)
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where, for each j ∈ [d], the probability generating function of Sj(u) appearing on the

right-hand side of (3.12) satisfies the fixed-point representation

fj(z, u) := E
[ d∏

l=1

z
Sl←j(u)

l

]
= zjE

[
exp

( d∑
m=1

Bmj

∫ u

0

gmj(v)
(
fm(z, u− v)− 1

)
dv
)]

;

(3.13)

see [55, Theorem 2]. In order to exploit this characterization to establish our large

deviations result in the multivariate compound Hawkes setting, we need to analyze

the domain of z = (z1, . . . , zd)
⊤ for which Eqns. (3.12) and (3.13) hold, i.e., where

the probability generating functions of Sj(u) exist. More precisely, since we focus on

the regime t → ∞ in (3.11), we actually need to consider the probability generating

function of the total cluster size Sj instead of Sj(u), which in the sequel is denoted by

fj(z) := lim
u→∞

fj(z, u) = E
[ d∏

l=1

z
Sl←j

l

]
, (3.14)

and analyze its domain. Let f : Rd
+ → Rd

be given by f(z) = (f1(z), . . . , fd(z))
⊤

and denote its effective domain by Df := {z ∈ Rd
+ : ∥f(z)∥Rd < ∞}. For the set Df ,

denote the interior by D◦f and the boundary by ∂Df .

Observe that the right-hand side of Eqn. (3.13) is expressed in terms of the mo-

ment generating function of the random vector Bj. We assume the following to hold

throughout the paper.

Assumption 3.2. For some ϑ ∈ Rd
+, assume that for all j ∈ [d],

mBj
(ϑ) = E

[
exp

( d∑
m=1

Bmjϑm

)]
<∞. (3.15)

The following result gives an implicit characterization of f(·) and its domain Df in

terms of a fixed-point representation.

Proposition 3.1. The vector-valued function f(z) is the unique increasing function

that satisfies

fj(z) = zj E
[
exp

( d∑
m=1

Bmjcmj(fm(z)− 1)
)]
, (3.16)

for z ∈ Rd
+ such that z ⩽ ẑr ≡ ẑ, where, for an arbitrarily given positive vector

r ∈ Rd
+, ẑ = (ẑ1, . . . , ẑd)

⊤ is given for each j ∈ [d] by

ẑj = rj

(
d∑

k=1

rkE
[
Bkjckj exp

( d∑
m=1

Bmjcmj(x̂m − 1)
)])−1

, (3.17)
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and x̂ = (x̂1, . . . , x̂d)
⊤ solves

xj

(
d∑

k=1

rkE
[
Bkjckj exp

( d∑
m=1

Bmjcmj(xm − 1)
)])

= rjE
[
exp

( d∑
m=1

Bmjcmj(xm − 1)
)]
. (3.18)

Proof. The proof consists of three parts: (i) identifying the limit of f(z, u) as u→ ∞;

(ii) implicit characterization of the domain Df ; (iii) proving uniqueness of f(·) that
satisfies (3.16).

— Proof of (i). We show that for z ∈ Df , we have that fj(z, u) → fj(z) for all

j ∈ [d]. At this point, we do not yet know the precise domain Df , but we do know it

is a convex subset of Rd
+ and we implicitly derive it later in the proof.

When z = 1, we have f(1, u) ≡ 1 ≡ f(1) and convergence follows trivially. Observe

that when 0 ⩽ z < 1, fj(z, u) is decreasing in u and 0 ⩽ fj(z, u) < 1. Hence, fj(z, u)

converges by the monotone convergence theorem to a finite limit as u→ ∞, satisfying

the limit of (3.13). When z > 1, fj(z, u) is increasing in u and either diverges to ∞
or converges to a finite limit, satisfying the limit of (3.13). In the intermediate case,

where for some k,m ∈ [d] one has zk ⩽ 1 and zm > 1, we proceed as follows. Recall

that for each j ∈ [d], the map u 7→ Sj(u) is a.s. increasing in all components. We

obtain the following upper bound

lim sup
u→∞

fj(z, u) = lim sup
u→∞

E
[ d∏

i=1

z
Si←j(u)
i

]
= lim sup

u→∞
E
[ ∏
k:zk⩽1

z
Sk←j(u)

k

∏
m:zm>1

zSm←j(u)
m

]
⩽ lim sup

u→∞
E
[ ∏
k:zk⩽1

z
Sk←j(u)

k

∏
m:zm>1

zSm←j
m

]
(∗)
= E

[ d∏
i=1

z
Si←j

i

]
= fj(z),

if the limit is finite, where in (∗) we have used the monotone convergence on the

product over k, as this product is decreasing. Similarly, we obtain the lower bound

lim inf
u→∞

fj(z, u) ⩾ lim inf
u→∞

E
[ ∏
k:zk⩽1

z
Sk←j

k

∏
m:zm>1

zSm←j(u)
m

]
(∗)
= E

[ d∏
i=1

z
Si←j

i

]
= fj(z),
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which implies that the lim inf and lim sup coincide, and so fj(z, u) → fj(z) for all j ∈
[d]. Provided all components converge, we have convergence of the vector f(z, u) →
f(z). Hence, from (3.13) we obtain for each j ∈ [d] and with z ∈ Df that

fj(z) = zj E
[
exp

( d∑
m=1

Bmjcmj(fm(z)− 1)
)]
, (3.19)

yielding a vector-valued fixed-point representation for f(z).

— Proof of (ii). We now implicitly characterize the domain Df . To that end,

consider the function G : Rd × Rd → Rd, where each entry Gj : Rd × Rd → R, with
j ∈ [d], is given by

Gj(z,x) = zj E
[
exp

( d∑
m=1

Bmjcmj(xm − 1)
)]

− xj. (3.20)

Note that G(·) is continuously differentiable for all z ∈ Rd and x ∈ Rd for which the

respective moment generating functions ofBj are defined. To obtain a characterization

of Df , we need to find the set of z on the boundary of Df , for which f(z) exists

and satisfies (3.16). Since Eqn. (3.16) is analogous to solving G(z,f(z)) = 0, we

can find the domain of f(·) by investigating the set G−1(0) = {(z,x) : G(z,x) =

0}. Since the preimage G−1(0) can be a complicated set, we resort to the preimage

theorem, a variation of the implicit function theorem also known as the regular level

set theorem, see e.g., [71, Theorem 9.9], which states two results. First, the preimage

has codimension equal to the dimension of the image, and second, the tangent space

at a point of the preimage coincides with the kernel of the Jacobian at that point,

provided that the Jacobian is of full-rank.

We proceed by providing a specification of the preimage theorem in our setting.

The first part of the preimage theorem states that G−1(0) is a d-dimensional space.

Note that in the univariate (d = 1) setting, G−1(0) would be a curve embedded in

R × R, and the tangent space would be a line. In our multivariate (d > 1) setting,

G−1(0) is a d-dimensional manifold embedded in Rd × Rd, and the tangent space is

again d-dimensional. The second part concerns tangent spaces, defined as follows: for

any (z,x) ∈ G−1(0), the tangent space Tz,x(G
−1(0)) consists of the set of vectors

(q, r) ∈ Rd
+ × Rd

+ for which there exists a curve γ ⊆ G−1(0) with γ(0) = (z,x) and

γ′(0) = (q, r). The second part of the preimage theorem then states

Ker
(
JG(z,x)

)
= Tz,x(G

−1(0)), (3.21)

with JG(z,x) ∈ Rd×2d denoting the full Jacobian of G evaluated at (z,x). We

compute the d × d-dimensional Jacobian matrices of partial derivatives of G w.r.t. z
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and x separately by

JG,z :=

[
∂Gj

∂zk
(z,x)

]
j,k∈[d]

=

[
1{j=k}E

[
exp

( d∑
m=1

Bmjcmj(xm − 1)
)]]

j,k∈[d]

,

and

JG,x :=

[
∂Gj

∂xk
(z,x)

]
j,k∈[d]

=

[
zjE
[
Bkjckj exp

( d∑
m=1

Bmjcmj(xm − 1)
)]

− 1{j=k}

]
j,k∈[d]

,

such that JG = (JG,z |JG,x). To utilize Eqn. (3.21), we need to look for vectors

(q, r) ∈ Rd
+ × Rd

+ such that JG · (q, r) = JG,z · q + JG,x · r = 0, where we denote

JG ≡ JG(z,x) for brevity. Note that JG,z is a diagonal matrix with positive entries,

such that JG,z · q = 0 only if q = 0; so we can focus on r. Observe that the set of

points where the determinant of the Jacobian JG,x has the same sign is a connected

set, due to strict convexity in each entry of the functions Gj(z,x), with j ∈ [d], and by

continuity of the determinant and partial derivatives. For a fixed vector r ∈ Rd
+, we

can establish systems of equations for z and x such that JG,x · r = 0. As will become

clear later in the proof, convexity will play a crucial role in determining uniqueness of

these solutions.

With the objective of substantiating the claim in (3.21), we compute the solution

to the systems of equations G(z,x) = 0 and JG,x · r = 0 by using the expression

for JG,x and solving for z and x. This yields the solutions ẑ = (ẑ1, . . . , ẑd)
⊤ and

x̂ = (x̂1, . . . x̂d)
⊤ given in Eqns. (3.17) and (3.18), with (ẑ, x̂) ≡ (ẑr, x̂r) parameterized

by vectors r ∈ Rd
+, such that G(ẑ, x̂) = 0 and JG,x(ẑ, x̂) · r = 0. Moreover, for any

given r ∈ Rd
+, we show that the associated pair (ẑr, x̂r) is unique. The condition

JG,x(ẑr, x̂r) ·r = 0 stated for each row yields ∇xGj(ẑr, x̂r) ·r = 0 for all j ∈ [d], with

∇xGj(·) the j-th row of the Jacobian. Note that each Gj(·) only depends on zj and

x. Due to strict convexity of Gj(z,x) in each entry, we have that the sub-level set

G−1j (⩽ 0) := {(z,x) : Gj(z,x) ⩽ 0} is a strictly convex set, and the level set G−1j (0)

is the boundary of G−1j (⩽ 0). This implies that

G−1(0) = {(z,x) : Gj(z,x) = 0,∀j ∈ [d]} =
d⋂

j=1

G−1j (0),

is the boundary of a strictly convex set, namely G−1(⩽ 0), as the latter is the inter-

section of strictly convex sets. Since JG,x(ẑr, x̂r) ·r = 0 means r ∈ Tẑr ,x̂r(G
−1(0)) by

Eqn. (3.21), and since G−1(0) is the boundary of a strictly convex set, we have that

r uniquely determines the point (ẑr, x̂r).

73



Chapter 3 Multivariate Compound Hawkes Processes

The next step amounts to relating what we found so far to the domain Df . A given

value of z ∈ Rd
+ determines whether one can find x ∈ Rd

+ for which G(z,x) = 0, such

that (z,x) ∈ G−1(0). Observe that the set Rz := {z ∈ Rd
+ : z = ẑr, r ∈ Rd

+} divides

the positive quadrant Rd
+ into two disjoint sets. The first set is the inner (convex)

region, defined as the set of z ∈ Rd
+ enclosed by the origin, the z axes and the set Rz,

with Rz included; denote this set by Z. The second set is the outer region, denoted by

Zc, and it is the complement of Z, such that Z ∪ Zc = Rd
+. Note that when z ∈ Zc,

then G(z,x) ̸= 0 for any x ∈ Rd
+, since Zc × Rd

+ does not intersect G−1(0). This

yields G−1(0) = {(z,x) : z ∈ Z,G(z,x) = 0}, and using that G(z,f(z)) = 0 for

all z ∈ Df , we find Df ⊆ Z, which proves (ii). However, for z ∈ Z, we may have

multiple x ∈ Rd
+ such that G(z,x) = 0, so we investigate this further.

— Proof of (iii). We are left with proving uniqueness of f(·). We prove this by

considering points (z,x) ∈ G−1(0) and relating them to f(·). From the preimage

theorem, we know that G−1(0) is d-dimensional, so we need only d parameters to

describe this set. We can use the implicit function theorem to describe the x coordinate

of (z,x) ∈ G−1(0) in terms of an implicit function of z. We consider a particular point

in this set and then show how the argument extends to other points.

Consider the point (z,x) = (1,1) ∈ G−1(0) since it satisfies G(1,1) = 0, where

we use Assumption 3.2 to ensure existence of the moment generating functions of Bj

around this point. Evaluated at the point (1,1), the Jacobian of G with respect to x

is given by

JG,x(1,1) = H⊤ − I, (3.22)

which is invertible due to Assumption 3.1. Then by the implicit function theorem, there

exist open sets V,W ⊆ Rd
+ both containing 1, and a unique continuously differentiable

function f̃ : V → W such that f̃(1) = 1 and G(z, f̃(z)) = 0 for all z ∈ V . Note that

this implies V ⊆ Z and that f̃(·) satisfies the fixed equation in (3.16). Moreover, since

f̃(·) is unique, we have f̃(·) = f(·) on V and V ⊆ D◦f , provided that f̃(·) is increasing
in all entries, since we know by definition that f(·) is increasing in all entries.

The point (1,1) is not particularly special; if we take another point (z0,x0) ∈
G−1(0), we find that the Jacobian JG,x(z0,x0) is invertible provided (z0,x0) ̸= (ẑ, x̂).

We can then apply the implicit function theorem to obtain open sets z0 ∈ V0 ⊆ Rd
+,

x0 ∈ W0 ⊆ Rd
+ and a unique map f̃0 : V0 → W0 that satisfies G(z, f̃0(z)) = 0 for all

z ∈ V0, again with V0 ⊆ Z. As before, we obtain f̃(·) = f(·) on V0 and V0 ⊆ D◦f , due

to uniqueness of f̃0, provided f̃0(·) is increasing in all entries. Since we can do this for

arbitrary points, we obtain uniqueness of f(·) on all of Z, such that Z ⊆ D◦f . Finally,

for any pair of solutions (ẑ, x̂) to Eqns. (3.17) and (3.18), we have by monotonicity of

f(·) that limz↗ẑ f(z) = x̂, which yields the characterization Z = Df .
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We remark that taking d = 1 in Proposition 3.1 yields agreement with the results

obtained in [54], where the condition that we impose that the implicit function is

increasing, is equivalent to the condition in [54] where they take the minimal solution

of the equation G(z, x) = 0 for fixed z < ẑ. Next, we focus on the limiting cumulant of

Z(·) given in (3.11). Note that the moment generating function of Z(t) in (3.10), and

hence also in (3.11), is expressed in terms of the moment generating functions of the

random vectors U1, . . . ,Ud. Denote mU (θ) = (mU1(θ), . . . ,mUd
(θ))⊤ as the vector

of moment generating functions of U1, . . . ,Ud. We impose the following condition,

assumed to hold throughout the paper.

Assumption 3.3. Assume that for any ẑ in (3.17), there exists a vector θ̂ ∈ Rd⋆ such

that

mU (θ̂) = ẑ. (3.23)

Define the function Λ : Rd⋆ → R by

Λ(θ) =
d∑

j=1

λj
(
fj(mU (θ))− 1

)
. (3.24)

Also define the domain of convergence DΛ := {θ ∈ Rd⋆ : Λ(θ) < ∞}, denote its

interior by D◦Λ and denote by ∂DΛ its boundary. We now characterize the limiting

cumulant of Z(·) in (3.11).

Lemma 3.1. We have 0 ∈ D◦Λ and for θ ∈ Rd⋆ such that θ ⩽ θ̂, where mU (θ̂) = ẑ

and with ẑ the solution to (3.17), we have

lim
t→∞

1

t
logmZ(t)(θ) = Λ(θ). (3.25)

Proof. We showed that 1 ∈ D◦f in the proof of Proposition 3.1. We then immediately

have by Assumption 3.3 that the vector of moment generating functions mU (·) is

defined in a neighborhood of the origin. Hence, by taking θ = 0, we have mU (0) = 1,

which implies 0 ∈ D◦Λ.

We now prove that Eqn. (3.25) holds. Combining Eqns. (3.10) and (3.12), we obtain

mZ(t)(θ) =
d∏

j=1

exp
(
λj

∫ t

0

(
E
[ d∏

l=1

mUl
(θ)Sl←j(u)

]
− 1
)
du
)
,

or, equivalently,

1

t
logmZ(t)(θ) =

d∑
j=1

λj

∫ 1

0

(
E
[ d∏

l=1

mUl
(θ)Sl←j(vt)

]
− 1
)
dv, (3.26)
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performing an elementary change of variables. We want to take limits t → ∞ in

Eqn. (3.26); to that end we first focus on the expectation in the integrand. By mim-

icking the proof of Proposition 3.1 in combination with the convexity of mUl
(θ) in

each entry, we can apply the monotone convergence theorem on the integrand to find

lim
t→∞

E
[ d∏

l=1

mUl
(θ)Sl←j(vt)

]
= E

[ d∏
l=1

mUl
(θ)Sl←j

]
,

provided θ ∈ DΛ. Now since we took θ ∈ DΛ, we have by Assumption 3.3 that there

exists θ̂ ∈ Rd⋆ such that θ ⩽ θ̂ and mU (θ̂) = ẑ. Using a similar argument as in

the proof of (i) in Proposition 3.1, distinguishing between indices k, n ∈ [d] for which

ẑk = mUk
(θ̂) ⩽ 1 and ẑn = mUn(θ̂) > 1, we can apply the dominated convergence

theorem to obtain

lim
t→∞

d∑
j=1

λj

∫ 1

0

(
E
[ d∏

l=1

mUl
(θ)Sl←j(vt)

]
− 1
)
dv

=
d∑

j=1

λj

∫ 1

0

lim
t→∞

(
E
[ d∏

l=1

mUl
(θ)Sl←j(vt)

]
− 1
)
dv

=
d∑

j=1

λj
(
fj(mU (θ))− 1

)
,

which proves Eqn. (3.25).

This result can be seen as the multivariate generalization of [54, Theorem 3.1.1],

which considers random marks, combined with the approach of [69], which has constant

marks but considers the compound process.

3.4 Large Deviations

In this section, we show that the multivariate compound Hawkes process satisfies

a large deviations principle (LDP). The proof proceeds by establishing the required

conditions on the limiting cumulant Λ(θ)—essential smoothness, most notably—such

that the Gärtner-Ellis theorem (see e.g., [19, Theorem 2.3.6]) can be invoked. This

section also briefly covers the special case of the LDP of a single component of a

multivariate compound Hawkes process.

First recall the definition of an LDP for Rd-valued random vectors; see [19, Section

1.2] for more background. Let B(Rd) be the Borel σ-field on Rd. Consider a family of

random vectors {Xϵ}ϵ∈R+ taking values in (Rd,B(Rd)). We say that {Xϵ}ϵ∈R+ satisfies
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the LDP with rate function I(·) if I : Rd → [0,∞] is a lower semicontinuous mapping,

and if for every Borel set A ∈ B(Rd),

− inf
x∈A◦

I(x) ⩽ lim inf
ϵ→0

ϵ logP(Xϵ ∈ A) ⩽ lim sup
ϵ→0

ϵ logP(Xϵ ∈ A) ⩽ − inf
x∈A

I(x), (3.27)

where A◦ and A denote the interior and closure of A. Also, recall that I(·) is lower

semicontinuous if, for all α ⩾ 0, the level sets {x ∈ Rd : I(x) ⩽ α} are closed; we call

I(·) a good rate function if the level sets are compact.

3.4.1 LDP of multivariate compound Hawkes processes

In this subsection, we establish that the process (Z(t)/t)t∈R+ satisfies an LDP on

(Rd⋆ ,B(Rd⋆)), as stated in the following theorem.

A distinguishing feature of our proof is that, due to the fact that the distribution

of Sj is not explicitly known, we prove steepness—a key step in proving essential

smoothness—implicitly, i.e., through the fixed-point representation (3.16) that the

probability generating functions fj(·) satisfy. In particular, we cannot mimic the

proof that was developed in [69] for the univariate case, as that proof heavily rests on

explicit expressions for the univariate cluster size distribution.

Our steepness proof, as given below, may be somewhat obscured by the involved

notation and complex objects needed due to the fact that we work in a multivariate

setting. To remedy this, we have also included in Appendix 3.A a separate proof for

the univariate setting that is based on the precise same reasoning as the one below,

but is considerably more transparent.

Theorem 3.1. The process (Z(t)/t)t∈R+ satisfies on (Rd⋆ ,B(Rd⋆)) the LDP with good

rate function

Λ∗(x) = sup
θ∈Rd⋆

(θ⊤x− Λ(θ)). (3.28)

Proof. The proof relies on an application of the Gärtner-Ellis theorem, for which

we need to show that the limiting cumulant Λ(θ) is an essentially smooth, lower

semicontinuous function. For essential smoothness, we need to show that D◦Λ is non-

empty and that 0 ∈ D◦Λ, that Λ(·) is differentiable on D◦Λ, and finally that Λ(·) is steep;
see [19, Section 2.3] for further details.

Lemma 3.1 shows that D◦Λ is non-empty and 0 ∈ D◦Λ. To show that Λ(·) is dif-

ferentiable on D◦Λ, recall from the proof of Proposition 3.1 that f(·) is continuously

differentiable on D◦f , exploiting Assumptions 3.1 and 3.2. Using this property, in com-

bination with the fact that the moment generating functions mUl
(θ) are differentiable

for θ ∈ D◦Λ by invoking Assumption 3.3, we conclude differentiability of Λ(·) on D◦Λ.
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Next, we prove that Λ(·) is steep, i.e., for any θ̄ ∈ ∂D◦Λ and a sequence θn ↗ θ̄ as

n → ∞, we have that limn→∞∥∇Λ(θn)∥Rd⋆ = ∞. For any i ∈ [d⋆], we first observe

that

∂

∂θi
Λ(θ) =

d∑
j=1

λj
∂

∂θi
fj(mU (θ))

=
d∑

j=1

λj

d∑
k=1

( ∂

∂θi
mUk

(θ)
)
E
[
Sk←j

d∏
l=1

mUl
(θ)Sl←j−1{k=l}

]
.

(3.29)

This identity entails that entries of ∇Λ(·) are given in terms of the partial derivatives

of the probability generating function of Sj, for all j ∈ [d].

To establish steepness of Λ(·), it suffices to show that the partial derivatives of fj(·)
diverge on the boundary of D◦Λ. Recall that the input for the probability generating

function f(·) in Eqn. (3.24) is the vector mU (θ) ∈ Rd
+. In the remainder of the proof,

we first derive steepness of f(·) at a specific z ∈ Rd
+, after which we consider the

setting in which f(·) is evaluated in the vector mU (θ).

Define the matrix B̂(z) = (B̂mj(z))m,j∈[d] by

B̂mj(z) := zjE
[
Bmjcmj exp

( d∑
i=1

Bijcij(fi(z)− 1)
)]
. (3.30)

Taking the partial derivative of the fixed-point representation (3.16) with respect to

zk, for k ∈ [d], yields

∂fj(z)

∂zk
= E

[
exp

( d∑
m=1

Bmjcmj(fm(z)− 1)
)]

1{k=j} +
d∑

m=1

∂fm(z)

∂zk
B̂mj(z)

=
fj(z)

zj
1{k=j} +

d∑
m=1

∂fm(z)

∂zk
B̂mj(z),

(3.31)

where the second equality is due to the fixed-point representation (3.16) itself. We can

write (3.31) compactly in matrix-vector form by considering the Jacobian Jf of f(·),
which yields

Jf (z) = (I − B̂(z)⊤)−1diag(f(z)/z), (3.32)

where the division f(z)/z is to be understood componentwise, provided the inverse

exists. We now explore for which values of z the inverse appearing in (3.32) fails

to exist, i.e., when the associated determinant equals 0. Consider an element ẑ on

the boundary of Df . Recall from Eqn. (3.17) that this ẑ is parametrized by some
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positive vector r ∈ Rd
+. Moreover, in this point we have f(ẑ) = x̂, with x̂ the solution

to (3.18), and hence

B̂mj(ẑ) = ẑjE
[
Bmjcmj exp

( d∑
i=1

Bijcij(x̂i − 1)
)]
. (3.33)

Combining this with Eqns. (3.17) and (3.18), we obtain

B̂(ẑ) · r = r ⇐⇒ (I − B̂(ẑ)) · r = 0, (3.34)

implying that r is in the kernel of I − B̂(ẑ). Since r is a positive (non-zero) vector,

we obtain that I − B̂(ẑ) is not invertible and so

det(I − B̂(ẑ)⊤) = 0. (3.35)

Then by Eqn. (3.32), we find that the directional derivative into the positive quadrant

diverges, i.e., for any q ∈ Rd
+ and sequence {zn} ⊆ D◦f such that zn ↗ ẑ , we have

lim
zn↗ẑ

∥Jf (zn) · q∥Rd = ∞,

since each element of diag(f(ẑ)/ẑ) = diag(x̂/ẑ) is positive and bounded. This proves

that f(·) is steep in each argument.

We now use the above observations to prove steepness of Λ(·). By Assumption 3.3,

there exists θ̂ on the boundary of DΛ such that mU (θ̂) = ẑ. With the same argument

as above, we find det(I−B̂(mU (θ̂))
⊤) = 0, such that I−B̂(mU (θ̂))

⊤ is not invertible

at the boundary of DΛ. Hence, for any positive vector q ∈ Rd and a sequence {θn} ⊆
D◦Λ such that θn ↗ θ̂, we have

lim inf
θn↗θ̂

∥Jf (mU (θn)) · q∥Rd = ∞. (3.36)

If we denote the entries of Jf by J
(jk)
f = ∂fj/∂zk, then from Eqn. (3.29), we have

lim inf
θn↗θ̂

∥∇Λ(θn)∥Rd⋆ = lim inf
θn↗θ̂

∥∥∥( ∂

∂θ1
Λ(θn), . . . ,

∂

∂θd⋆
Λ(θn)

)∥∥∥
Rd⋆

=
∥∥∥( d∑

j=1

λj

d∑
k=1

lim inf
θn↗θ̂

∂

∂θ1
mUk

(θn)E
[
Sk←j

d∏
l=1

mUl
(θn)

Sl←j−1{k=l}
]
,

. . . ,
d∑

j=1

λj

d∑
k=1

lim inf
θn↗θ̂

∂

∂θd⋆
mUk

(θn)E
[
Sk←j

d∏
l=1

mUl
(θn)

Sl←j−1{k=l}
])∥∥∥

Rd⋆

⩾
∥∥∥( d∑

j=1

λj

d∑
k=1

∂

∂θ1
mUk

(θ̂)E
[
lim inf
θn↗θ̂

Sk←j

d∏
l=1

mUl
(θn)

Sl←j−1{k=l}
]
, (3.37)
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(3.38)

. . . ,

d∑
j=1

λj

d∑
k=1

∂

∂θd⋆
mUk

(θ̂)E
[
lim inf
θn↗θ̂

Sk←j

d∏
l=1

mUl
(θn)

Sl←j−1{k=l}
])∥∥∥

Rd⋆

=
∥∥∥( d∑

j=1

λj

d∑
k=1

∂

∂θ1
mUk

(θ̂)J jk
f (mU (θ̂)), . . . ,

d∑
j=1

λj

d∑
k=1

∂

∂θd⋆
mUk

(θ̂)J jk
f (mU (θ̂))

)∥∥∥
Rd⋆

= ∞,

where the inequality is an application of Fatou’s lemma and the last equality is a

consequence of (3.36).

We finally prove lower semicontinuity of Λ(·). Since we consider a metric space Rd⋆ ,

it suffices to show lower semicontinuity through sequences. Consider θn ↗ θ ∈ D◦Λ
and observe that by Fatou’s lemma, we have

lim inf
θn↗θ

E
[ d∏

l=1

mUl
(θn)

Sl←j

]
⩾ E

[ d∏
l=1

lim inf
θn↗θ

mUl
(θn)

Sl←j

]
, (3.39)

for any j ∈ [d]. Furthermore, it is easily shown that, for any integer k ∈ N, another
application of Fatou’s lemma yields

lim inf
θn↗θ

mUl
(θn)

k = lim inf
θn↗θ

E
[
exp(θ⊤nUl)

]k
⩾ E

[
exp(θ⊤Ul)

]k
. (3.40)

Since the random variables Sl←j are non-negative, we obtain

lim inf
θn↗θ

Λ(θn) = lim inf
θn↗θ

d∑
j=1

λj
(
E
[ d∏

l=1

mUl
(θn)

Sl←j

]
− 1
)

⩾
d∑

j=1

λj
(
E
[
lim inf
θn↗θ

d∏
l=1

mUl
(θn)

Sl←j

]
− 1
)
⩾ Λ(θ).

(3.41)

We have now verified that the limiting cumulant Λ(·) satisfies all conditions for the

Gärtner-Ellis theorem [19, Theorem 2.3.6] to apply. This concludes the proof of the

LDP.

The consequence of this LDP is that, for any Borel set A ∈ B(Rd⋆), we have that

the measure νt : B(Rd⋆) → [0, 1] defined by νt(A) := P(Z(t)/t ∈ A) satisfies

− inf
x∈A◦

Λ∗(x) ⩽ lim inf
t→∞

1

t
log νt(A) ⩽ lim sup

t→∞

1

t
log νt(A) ⩽ − inf

x∈A
Λ∗(x). (3.42)

80



3.5 Ruin Probabilities

3.4.2 LDP of a single component

As a special case of interest, explicitly required later in this paper, we now provide

the LDP of a single component. Hence, throughout this subsection, fix i ∈ [d⋆] and

consider the R-valued component Zi(·) of the multivariate compound Hawkes process,

as defined in Eqn. (3.2). The associated limiting cumulant is

Λi(θ) := lim
t→∞

1

t
logE[eθZi(t)] = Λ(0, . . . , θ, . . . , 0), (3.43)

where the input vector of Λ(·) is non-zero on the i-th position. It is noted that whereas

Zi(t) is a one-dimensional object, it is still driven by the multivariate Hawkes process

N (·).
Compared to the multivariate setting in Section 3.4.1, we now have to work with

the domain DΛi
:= {θ ∈ R : Λi(θ) < ∞}, where the argument of the probability

generating function of Sj is given by

mU(i)
(θ) := (mUi1

(θ), . . . ,mUid
(θ))⊤,

with mUij
(θ) = E[eθUij ]. Here, the vector U(i) = (Ui1, . . . , Uid)

⊤ is the i-th row of

the matrix U , where i ∈ [d⋆]. From Assumption 3.3, we find that for any ẑ as the

solution to (3.17), there exists θ̂ > 0 such that mU(i)
(θ̂) = ẑ, and for θ ⩽ θ̂, we have

by Lemma 3.1,

Λi(θ) =
d∑

j=1

λj
(
E
[ d∏

l=1

mUil
(θ)Sl←j

]
− 1
)
. (3.44)

Corollary 3.1. The process (Zi(t)/t)t∈R+ satisfies on (R,B(R)) the LDP with good

rate function

Λ∗i (x) = sup
θ∈R

(θx− Λi(θ)). (3.45)

3.5 Ruin Probabilities

In this section, we analyze a risk process in which the claims are generated by a mul-

tivariate compound Hawkes process. In particular, using the LDP results for Zi(t)/t

established in the previous section, we characterize the asymptotic behavior of the

ruin probabilities of the corresponding risk process.

We assume a constant premium rate r > 0 per unit of time and consider, for a given

i ∈ [d⋆], the net cumulative claim process (or: risk process)

Yi(t) := Zi(t)− rt. (3.46)
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Our objective is to find the asymptotics of the associated ruin probability, i.e., the

probability that this net cumulative process ever exceeds level u, for some u > 0.

From the LLN result for Z(t)/t given in Eqn. (3.9), we have that

Zi(t)

t
→ E[U(i)](I −H)−1λ, (3.47)

a.s., with E[U(i)] = (E[Ui1], . . . ,E[Uid]). To make sure that ruin is rare, we impose

throughout the net profit condition:

r > E[U(i)](I −H)−1λ, (3.48)

such that the process Yi(t) drifts towards −∞. For some initial capital u > 0, the

time of ruin is defined as

τu := inf{t > 0 : u+ rt− Zi(t) < 0} = inf{t > 0 : Yi(t) > u},

and the associated infinite horizon ruin probability is defined as

p(u) := P(τu <∞). (3.49)

We study the behavior of p(u) for u large.

From Lemma 3.1, it immediately follows that the limiting cumulant function of

Yi(·) satisfies

Ψi(θ) := lim
t→∞

1

t
logE

[
eθYi(t)

]
= Λi(θ)− rθ, (3.50)

with Λi(·) given in Eqn. (3.44). By [19, Lemma 2.3.9], we know that Λi(·) is a convex

function, which implies that Ψi(·) is also convex. We assume throughout the paper

that we are in the light-tailed regime, in the sense that there exists θ⋆ > 0 such that

Ψi(θ
⋆) = 0. (3.51)

In the rest of this section, we prove that p(u) decays essentially exponentially as u

increases, as made precise in the following theorem.

Theorem 3.2. For fixed i ∈ [d⋆], the ruin probability p(u) associated to the risk process

Yi(·) has logarithmic decay rate −θ⋆, i.e.,

lim
u→∞

1

u
log p(u) = −θ⋆, (3.52)

where θ⋆ is the unique positive solution of (3.51).
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Proof. First note that θ⋆ > 0 is unique by combining the observations Ψi(0) = 0,

Ψ′i(0) < 0 as a consequence of (3.48), and the convexity of Ψi(·). The rest of the proof
consists of two main steps, which yield a lower bound and an upper bound on the

left-hand side of Eqn. (3.52).

— Lower bound. The objective is to prove that

lim inf
u→∞

1

u
log p(u) ⩾ −θ⋆. (3.53)

We first observe that, for any t > 0, we evidently have p(u) ⩾ p(u, t) := P(Yi(t) > u).

This directly implies that, for any t > 0,

lim inf
u→∞

1

u
log p(u) ⩾ lim

u→∞

1

u
log p(u, ut)

= lim inf
u→∞

1

u
logP(Zi(ut)− rut > u)

= t lim inf
u→∞

1

ut
logP(Zi(ut)/ut > r + 1/t).

Then we can use that, by Corollary 3.1, {Zi(ut)/ut}t∈R+ satisfies the LDP with rate

function Λ∗i (·). We thus obtain

lim inf
u→∞

1

u
log p(u) ⩾ −t inf

x>r+1/t
Λ∗i (x).

Recall the assumption given in Eqn. (3.48) that r > µi := E[U(i)](I−H)−1λ. Further,

note that Λ∗i (·) is continuous and non-decreasing on (µi,∞) by [37, Lemma 2.7], and

in addition Λ∗i (µi) = 0. Upon combining all these elements, we have that

lim inf
u→∞

1

u
log p(u) ⩾ −tΛ∗i (r + 1/t).

To compute this final expression, observe that since Ψi(0) = 0, Ψi(θ
⋆) = 0 and Ψi(·)

is convex, we have that Ψ′i(θ
⋆) = Λ′i(θ

⋆)− r > 0. Since t > 0 was arbitrary, we can in

particular take t = t⋆ := (Λ′i(θ
⋆)− r)−1. This implies that

Λ∗i (r + 1/t⋆) = Λ∗i (Λ
′
i(θ

⋆)) = sup
θ∈R

(θΛ′i(θ
⋆)− Λi(θ))

= θ⋆Λ′i(θ
⋆)− Λi(θ

⋆) = θ⋆(Λ′i(θ
⋆)− r) =

θ⋆

t⋆
;

the third equality follows by noting that the supremum is attained at θ⋆ since g(θ) :=

θΛ′i(θ
⋆) − Λi(θ) is maximal if g′(θ) = 0, which is when θ = θ⋆; the fourth equality

follows from Ψi(θ
⋆) = 0, which is equivalent to Λi(θ

⋆) = rθ⋆; and the last equality

follows from the definition of t⋆. Hence, we conclude that

lim inf
u→∞

1

u
log p(u) ⩾ −t⋆Λ∗i (r + 1/t⋆) = −θ⋆,
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which proves Eqn. (3.53).

— Upper bound. We next prove the upper bound, i.e.,

lim sup
u→∞

1

u
log p(u) ⩽ −θ⋆. (3.54)

To do so, we majorize the ruin probability p(u) by a finite sum and a sum with

countably many terms, as follows. First, observe that for u > r, we have

p(u) ⩽ q(u) := P( inf
n∈N

Yi(n) ⩾ u− r),

where we have used that the net cumulative claim process can go down with maximally

an amount r per time unit. Define, as before, t⋆ = (Λ′i(θ
⋆)− r)−1. For any L > 0, the

union bound gives

q(u) ⩽
∑

n⩽(1+L)t⋆u

P(Yi(n) ⩾ u− r) +
∑

n>(1+L)t⋆u

P(Yi(n) ⩾ u− r)

⩽
∑

n⩽(1+L)t⋆u

P(Yi(n) ⩾ u− r) +
∑

n>(1+L)t⋆u

P(Yi(n) ⩾ 0),

where n takes integer values in both sums. The intuition is that the first sum contains

the contribution of paths corresponding to the most likely timescale t⋆u of exceeding

u. This means that the first sum is expected to dominate the second sum as u→ ∞,

which is proven to be correct in the remainder of the proof.

Consider the finite sum, and note that the Chernoff bound yields for any θ > 0 that∑
n⩽(1+L)t⋆u

P(Yi(n) ⩾ u− r) ⩽
∑

n⩽(1+L)t⋆u

e−θ(u−r)E
[
eθYi(n)

]
⩽ (1 + L)t⋆ue−θ(u−r) max

n∈[(1+L)t⋆u]
E
[
eθYi(n)

]
.

(3.55)

In particular, this inequality holds for θ = θ⋆. Inserting the familiar expression for the

cumulant of Zi(t), we have for any t > 0 that

logE
[
eθ

⋆Yi(t)
]
= logE

[
eθ

⋆Zi(t)
]
− rθ⋆t

=
d∑

j=1

λj

∫ t

0

E
[ d∏

l=1

mUil
(θ⋆)Sl←j(v)

]
dv − t

d∑
j=1

λj − rθ⋆t

⩽ t
d∑

j=1

λj sup
v⩽t

E
[ d∏

l=1

mUil
(θ⋆)Sl←j(v)

]
− t

d∑
j=1

λj − rθ⋆t

⩽ t

(
d∑

j=1

λjE
[ d∏

l=1

mUil
(θ⋆)Sl←j

]
−

d∑
j=1

λj − rθ⋆

)
= tΨi(θ

⋆) = 0,
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where in the second inequality we used that Sl←j(v) increases in v, and in the final

equality we used the definition of θ⋆, as given in Eqn. (3.51). The next step is to

combine this with the upper bound that was found in Eqn. (3.55). This yields

lim sup
u→∞

1

u
log

∑
n⩽(1+L)t⋆u

P(Yi(n) ⩾ u− r)

⩽ lim sup
u→∞

1

u
log
(
(1 + L)t⋆u max

n∈[(1+L)t⋆u]
e−θ

⋆(u−r)E
[
eθ

⋆Yi(n)
])

⩽ lim sup
u→∞

1

u
log
(
(1 + L)t⋆u) + lim

u→∞

−θ⋆u+ θ⋆r

u
+ 0 = −θ⋆.

For the sum with countably many terms, we again apply the Chernoff bound. For any

θ > 0, we thus obtain ∑
n>(1+L)t⋆u

P(Yi(n) ⩾ 0) ⩽
∑

n>(1+L)t⋆u

E
[
eθYi(n)

]
.

To proceed, we observe that the assumption Ψi(θ
⋆) = 0 together with Ψi(0) = 0

implies, by the mean value theorem, that there exists θ◦ > 0 such that Ψ′i(θ
◦) = 0. It

requires elementary calculus to verify that

Ψ′i(0) = Λ′i(0)− r =
d∑

j=1

λj

d∑
k=1

E[Uik]E[Sk←j]− r = E[U(i)]E[S]λ− r,

cf. Eqn. (3.9). We conclude that Ψ′i(0) < 0 from the net profit condition (3.48).

Combining the above observations with the fact that Ψi(·) is convex, it follows that

Ψi(θ
◦) < 0. Hence, we can choose n0 ∈ N and δ ∈ (0, |Ψi(θ

◦)|) such that for all n

larger than n0, we have that

1

n
logE

[
eθ
◦Yi(n)

]
< Ψi(θ

◦) + δ.

Finally, since Ψi(θ
◦) + δ < 0, we have that z := exp(Ψi(θ

◦) + δ) < 1, so that we can

apply the geometric series to bound∑
n>(1+L)t⋆u

E
[
eθ
◦Yi(n)

]
⩽

∑
n>(1+L)t⋆u

exp
(
n(Ψi(θ

◦) + δ)
)
⩽
z(1+L)t⋆u

1− z
.

We conclude the proof by combining the two upper bounds. We take L large enough

such that z(1+L)t⋆ < e−θ
⋆
, for which it is sufficient that

L >
θ⋆

(Φ(θ◦) + δ)t⋆
.
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As a consequence,

lim sup
u→∞

1

u
log p(u) ⩽ lim sup

u→∞

1

u
log

(
(1 + L)t⋆u e−θ

⋆(u−r) +
z(1+L)t⋆u

1− z

)
= −θ⋆. (3.56)

We have thus established (3.54).

3.6 Rare Event Simulation

In this section, we use importance sampling to efficiently estimate rare event probabil-

ities. This is accomplished by first exponentially twisting the underlying probability

measure P. In Section 3.6.1, we describe how to identify the model primitives under

this new measure, which we throughout refer to as Q. In the two subsequent subsec-

tions, we specifically consider the probability of ruin in component i ∈ [d] (of which the

logarithmic asymptotics have been derived in Section 3.5), and the probability of the

multivariate compound Hawkes process attaining rare values (of which the logarithmic

asymptotics have been established in Theorem 3.1).

3.6.1 Identification of the alternative distribution

In this subsection, we describe how to construct the exponentially twisted version of

the multivariate compound Hawkes process, which we associate with the probability

measure Q. More specifically, we identify a stochastic process of which the limiting

cumulant equals, for a vector θ⋆ ∈ Rd⋆ ,

ΨQ(θ) := Ψ(θ + θ⋆)−Ψ(θ⋆),

with Ψ(θ) = Λ(θ)− r⊤θ, and, by virtue of Lemma 3.1,

Λ(θ) =
d∑

j=1

λj
(
fj(mU (θ))− 1

)
. (3.57)

To this end, it is first verified that

Λ(θ + θ⋆)− Λ(θ⋆) =
d∑

j=1

λjfj(mU (θ
⋆))

(
fj(mU (θ + θ⋆))

fj(mU (θ⋆))
− 1

)
.

Next, for j ∈ [d],

fj(mU (θ + θ⋆))

fj(mU (θ⋆))
=

1

fj(mU (θ⋆))

∑
n∈Nd

0

P(Sj = n)
d∏

l=1

(mUl
(θ + θ⋆))nl
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=
∑
n∈Nd

0

P(Sj = n)

fj(mU (θ⋆))

d∏
l=1

(mUl
(θ⋆))nl

(
mUl

(θ + θ⋆)

mUl
(θ⋆)

)nl

.

Now define, for j ∈ [d],

Q(Sj = n) :=
P(Sj = n)

fj(mU (θ⋆))

d∏
l=1

(mUl
(θ⋆))nl ,

which induces a probability distribution (i.e., non-negative and summing to 1) by its

very construction. Define by fQ
j (z) the corresponding probability generating function,

which is the counterpart of fj(z) under Q: for j ∈ [d],

fQ
j (z) =

∑
n∈Nd

0

Q(Sj = n)
d∏

l=1

znl
l =

fj(mU1(θ
⋆)z1, . . . ,mUd

(θ⋆)zd)

fj(mU (θ⋆))
. (3.58)

In addition, define, for l ∈ [d],

Q(U1l ∈ dx1, . . . , Ud⋆l ∈ dxd⋆) :=
P(U1l ∈ dx1, . . . , Ud⋆l ∈ dxd⋆)

mUl
(θ⋆)

d⋆∏
k=1

eθ
⋆
kxk , (3.59)

which generates a probability distribution (i.e., non-negative and integrating to 1); let

mQ
Ul
(θ) be the associated moment generating function, given by

mQ
Ul
(θ) =

mUl
(θ + θ⋆)

mUl
(θ⋆)

.

We finally define the base rates under Q via

λ
Q
j := λjfj(mU (θ

⋆)), (3.60)

for j ∈ [d].

Upon combining the objects defined above, it now requires an elementary verifica-

tion to conclude that

Λ(θ + θ⋆)− Λ(θ⋆) =
d∑

j=1

λ
Q
j

(
fQ
j (m

Q
U (θ))− 1

)
,

as desired; cf. (3.57). This means that we have uniquely characterized the joint distri-

bution of the cluster sizes Sj (for j ∈ [d]), the joint distribution of the claim sizes Ul

(for l ∈ [d]), and the base rates under the alternative measure Q.

The only question left is: How does one sample a cluster size Sj under Q? More

concretely: What is the distribution of the marks Blj under the alternative measure
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Q, and how should the corresponding decay functions glj(·) be adapted? To this end,

we revisit (3.16), which we rewrite to

fj(z) = zj mBj
(c1j(f1(z)− 1), . . . , cdj(fd(z)− 1)), (3.61)

using the self-evident notation

mBj
(θ) := E exp

(
d∑

m=1

θmBmj

)
.

Introduce the compact notation yθ⋆(z) := (mU1(θ
⋆)z1, . . . ,mUd

(θ⋆)zd)
⊤. Hence, as an

immediate consequence of (3.58), we obtain

fQ
j (z) =

fj(yθ⋆(z))

fj(yθ⋆(1))
.

Upon combining the two previous displays, we conclude that we can rewrite fQ
j (z) as

fQ
j (z) =

mUj
(θ⋆)zj ·mBj

(c1j(f1(yθ⋆(z))− 1), . . . , cdj(fd(yθ⋆(z))− 1))

mUj
(θ⋆) ·mBj

(c1j(f1(yθ⋆(1))− 1), . . . , cdj(fd(yθ⋆(1))− 1))

= zj
mBj

(c1j(f1(yθ⋆(z))− 1), . . . , cdj(fd(yθ⋆(z))− 1))

mBj
(c1j(f1(yθ⋆(1))− 1), . . . , cdj(fd(yθ⋆(1))− 1))

.

To simplify this further, we write

cQlj = cljfl(yθ⋆(1)), c̄Qlj := cQlj − clj, (3.62)

such that

fQ
j (z) = zj

mBj

(
cQ1j

(
f1(yθ⋆(z))

f1(yθ⋆(1))
− 1

)
+ c̄Q1j, . . . , c

Q
dj

(
fd(yθ⋆(z))

fd(yθ⋆(1))
− 1

)
+ c̄Qdj

)
mBj

(c̄Q1j, . . . , c̄
Q
dj)

.

We now focus on the distribution of the marks under the alternative measure Q.

Denoting c̄Qj = (c̄Q1j, . . . , c̄
Q
dj)
⊤, we define

Q(B1j ∈ dx1, . . . , Bdj ∈ dxd) :=
P(B1j ∈ dx1, . . . , Bdj ∈ dxd)

mBj
(c̄Qj )

d∏
l=1

ec̄
Q
ljxl , (3.63)

so that

mQ
Bj
(θ) =

mBj
(θ + c̄Qj )

mBj
(c̄Qj )

.
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Combining the above relations, we thus conclude that

fQ
j (z) = zj m

Q
Bj

(
cQ1j(f

Q
1 (z)− 1), . . . , cQdj(f

Q
d (z)− 1)

)
,

which has, appealing to Eqn. (3.61), the right structure. This means that we have

identified the distribution of the marks and the decay functions under Q.
The following summarizes the above findings. Most importantly, the exponentially

twisted version of the multivariate compound Hawkes process is again a multivariate

compound Hawkes process, but (evidently) with different model primitives. Specif-

ically, the θ⋆-twisted version of the multivariate compound Hawkes process can be

constructed as follows:

◦ the base rate λj is replaced by λ
Q
j = λj fj(mU (θ

⋆)); cf. (3.60).

◦ the density of Ul is replaced by Q(U1l ∈ dx1, . . . , Ud⋆l ∈ dxd⋆), as given by (3.59);

◦ the density of Bj is replaced by Q(B1j ∈ dx1, . . . , Bdj ∈ dxd), as given by (3.63);

◦ the decay function glj(·) is replaced by gQlj(·) := glj(·) fl(yθ⋆(1)) = glj(·) fl(mU (θ
⋆));

cf. (3.62).

This exponentially twisting mechanism generalizes the one identified for the univariate

compound Hawkes process with unit marks, featuring in the statement of [69, Theorem

2.2].

3.6.2 Ruin probabilities

In this subsection, we return to the problem of assessing the ruin probability pertaining

to the net cumulative claim process Yi(t), as defined by (3.46). We show that twisting

Y (t) by θ⋆ = (0, . . . , 0, θ⋆, 0, . . . , 0)⊤, with the θ⋆ corresponding to the i-th entry

and solving Ψi(θ
⋆) = 0, leads to an estimator that is asymptotically efficient (also

sometimes referred to as logarithmically efficient, or asymptotically optimal); in the

remainder of this subsection, we refer to this specific alternative measure by Q. For

more background on optimality notions of importance sampling procedures, such as

asymptotic efficiency, we refer to [5, Section VI.1]. Our proof, in principle, follows

the same structure as the one given in [69, Section 4]; as various steps directly mimic

their counterparts in [69], we leave out some evident details and focus on the main

innovations in this general, multivariate setting with random marks.

Recall that p(u) = P(τu <∞), with τu the first time that Yi(·) exceeds level u. First
note that p(u) = EQ[LτuI], where I is the indicator function of the event {τu <∞} and
Lτu is the appropriate likelihood ratio, which quantifies the likelihood of the sampled
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Chapter 3 Multivariate Compound Hawkes Processes

path under P relative to Q. More precisely, Lτu is the Radon-Nikodym derivative of

the sampled path under the measure P relative to the measure Q, evaluated at the

ruin time τu. As in [69, Lemma 4.3], it can be concluded that—essentially due to the

fact that we changed the drift of the risk process from a negative value (under P) into
a positive value (under Q)—under Q eventually any positive value is reached by the

process Yi(·). Thus, I ≡ 1 with Q-probability 1, and hence p(u) = EQLτu .

Following the reasoning in [69] (i.e., effectively relying on a general result in [50]),

we can express the likelihood ratio in terms of the various quantities pertaining to

the original measure P and their counterparts under Q. Indeed, the likelihood ratio at

time t equals

dP
dQ

∣∣∣
Ft

= Lt = exp

(
−

d∑
j=1

∫ t

0

(λj(s)− λQj (s)) ds

)
exp

(
d∑

j=1

∫ t

0

log
λj(s)

λQj (s)
dNj(s)

)

× exp

 d∑
j=1

Nj(t)∑
r=1

log ℓj
(
Bj,r)

 d∏
j=1

mUj
(θ⋆)Nj(t)

eθ
⋆
jZj(t)

,

(3.64)

where

λj(s) = λj +
d∑

l=1

Nl(s)∑
r=1

Bjl,r gjl(s− Tl,r), λQj (s) = λ
Q
j +

d∑
l=1

Nl(s)∑
r=1

Bjl,r g
Q
jl(s− Tl,r),

(3.65)

with λ
Q
j and gQjl(·) as defined in Section 3.6.1 and all random objects sampled under

Q, and with ℓj(x) denoting the ratio of the density of the random marks Bj under P
and its counterpart under Q evaluated in the argument x. It is directly seen, from the

construction of the measure Q, that

λQj (s) = λj(s)fj(mU (θ
⋆)) > λj(s).

Note that the relation between λQj (s) and λj(s), and the fact that θ⋆ is non-zero in

the i-th entry, allows us to express the likelihood ratio as

Lt = exp

(
−

d∑
j=1

(
1− fj(mU (θ

⋆))
) ∫ t

0

λj(s)ds

)
e−θ

⋆Zi(t)

× exp

 d∑
j=1

Nj(t)∑
r=1

log ℓj
(
Bj,r

) d∏
j=1

(
mUj

(θ⋆)

fj(mU (θ⋆))

)Nj(t)

.

(3.66)
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We now introduce the importance sampling estimator and prove its efficiency. With

n ∈ N, we define the importance sampling estimator of p(u) by

pn(u) :=
1

n

n∑
m=1

L(m)
τu , (3.67)

where L
(m)
τu (for m = 1, . . . , n) are independent replications of Lτu , sampled under Q.

In our context, asymptotic efficiency is to be understood as

lim
u→∞

1

u
log
√

VarQLτu ⩽ lim
u→∞

1

u
log p(u),

that is, the measure Q is asymptotically efficient for simulations; see Siegmund’s cri-

terion [68].

Theorem 3.3. The importance sampling estimator pn(u) of the ruin probability p(u),

using the alternative measure Q that corresponds to the exponential twist

θ⋆ = (0, . . . , 0, θ⋆, 0, . . . , 0),

is asymptotically efficient.

Proof. In order to eventually prove that our estimator is asymptotically efficient, the

main idea is to find an upper bound on Lτu . By definition of the conditional intensities

λj(s) and λ
Q
j (s) in (3.65), we have

exp

(
−
∫ τu

0

d∑
j=1

(
1− fj(mU (θ

⋆))
)
λj(s)ds

)
= exp

(
−
∫ τu

0

d∑
j=1

λj(1− fj(mU (θ
⋆))) ds

)

× exp

−
∫ τu

0

d∑
l=1

d∑
j=1

Nj(s)∑
r=1

Blj,rglj(s− Tj,r)(1− fl(mU (θ
⋆))) ds

 ,

where we switched the order of the summations over j and l. Then observe that,

recalling that θ⋆ solves the equation Ψi(θ
⋆) = 0,

exp

(
−
∫ τu

0

d∑
j=1

λj(1− fj(mU (θ
⋆))) ds

)
= exp

(
−τu

d∑
j=1

λj(1− fj(mU (θ
⋆)))

)
= erθ

⋆τu .

In addition, note that Zi(τu)− rτu > u due to the definition of τu, which implies that

erθ
⋆τue−θ

⋆Zi(τu) ⩽ e−θ
⋆u.
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Also observe that since clj = ∥glj∥L1(R+), we have the bound

exp

(∫ τu

0

d∑
j=1

d∑
l=1

Nj(s)∑
r=1

Blj,rglj(s− Tj,r)(fj(mU (θ
⋆))− 1)ds

)

⩽ exp

 d∑
j=1

d∑
l=1

Nj(τu)∑
r=1

Blj,rclj(fl(mU (θ
⋆))− 1)

 . (3.68)

Finally, the contribution to the likelihood ratio Lτu due to the random marks is given

by

ℓj(v) = exp(−v⊤c̄Q)mBj
(c̄Q), (3.69)

where c̄Q is the twist parameter for Bj as defined in Eqn. (3.62). As a consequence,

exp

 d∑
j=1

Nj(τu)∑
r=1

log ℓj
(
Bj,r

) = exp

−
d∑

j=1

Nj(τu)∑
r=1

B⊤j,rc̄
Q

 d∏
j=1

mBj

(
c̄Q
)Nj(τu), (3.70)

which implies that the expression given in (3.68) cancels against the exponential term

in (3.70), noting that c̄Q =
(
c1j(f1(mU (θ

⋆))− 1), . . . , cdj(fd(mU (θ
⋆))− 1)

)⊤
.

Upon combining the above, and after some rewriting, we obtain that

p(u) ⩽ e−θ
⋆u EQ

[
d∏

j=1

exp
(
− log fj(mU (θ

⋆)) + logmUj
(θ⋆) + logmBj

(c̄Q)
)Nj(τu)

]
.

As it turns out, the expression in the previous display simplifies considerably, as can

be seen as follows. By (3.16), for any z,

log fj(z) = log zj +mBj

(
c1j(f1(z)− 1), . . . , cdj(fd(z)− 1)

)
.

Now plugging in z = mU (θ
⋆), we conclude that the expectation under the new mea-

sure Q fully reduces to unity, again by definition of c̄Q. This means that we have

arrived at the upper bound p(u) = EQLτu ⩽ e−θ
⋆u and we are now in a position to

conclude the statement. It follows directly from the observation

VarQLτu = EQL
2
τu − (EQLτu)

2 ⩽ EQL
2
τu ⩽ e−2θ

⋆u,

in combination with Theorem 3.2.

Remark 3.1. In the final part of the proof of Theorem 3.3, we have in passing derived

a Lundberg-type inequality for this non-standard ruin model. Indeed, we have that
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the ruin probability p(u), corresponding to the net cumulative claim process Yi(·),
satisfies the upper bound

p(u) ⩽ e−θ
⋆u, (3.71)

uniformly in u > 0.

The immediate consequence of the above theorem, which substantially generalizes

[69, Theorem 4.5], is the following. Suppose that we wish to obtain an estimate with a

certain precision, defined as the ratio of the confidence interval’s half-width (which is

proportional to the standard deviation of the estimate) and the estimate itself. Using

simulation under the actual measure P, the number of runs required to obtain a given

precision is inversely proportional to the probability to be estimated. In our specific

case, this means that, due to Theorem 3.2, under P this number grows exponentially

in u (roughly like eθ
⋆u, that is). Under the alternative measure Q, however, Theorem

3.3 entails that the number of runs to achieve this precision grows subexponentially,

thus yielding a substantial variance reduction. This means that, despite the fact that

the ruin probability decays very rapidly as u grows, the simulation effort required to

estimate it grows at a relatively modest pace.

3.6.3 Exceedance probabilities

In this subsection, we consider the estimation of probabilities of the type

qt(a) := P
(
Z1(t)

t
⩾ a1, . . . ,

Zd⋆(t)

t
⩾ ad⋆

)
,

where the set A := [a1,∞) × · · · × [ad⋆ ,∞) does not contain the vector µ, with, as

before

µi = E[U(i)](I −H)−1λ,

the asymptotic value of the process Zi(t)/t. We consider the regime that t grows large,

in which the event of interest becomes increasingly rare by Theorem 3.1. We show

that the associated importance sampling estimator is asymptotically efficient. In our

exposition, we start by detailing the case d⋆ = 1 and then provide a proof by example

for the case d⋆ = 2, where it turns out that multiple cases need to be distinguished.

We finish by briefly discussing how the case of general d⋆ can be dealt with, relying

on the principles developed for the d⋆ = 2 case. As will become clear in our analysis,

the underlying computations strongly resemble those in Section 3.6.2.

We now introduce the importance sampling estimator for the exceedance probability

and then prove its efficiency. Let I ≡ Ia be the indicator for the rare event, i.e., set
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Ia := {Z1(t) ⩾ a1t, . . . , Zd⋆(t) ⩾ ad⋆t} for any given t > 0. We define the importance

sampling estimator for the probability of this event by

qt,n(a) :=
1

n

n∑
m=1

L
(m)
t I(m)

a , (3.72)

where L
(m)
t are independent replications of Lt, sampled under Q with a twist parameter

depending on a. Here, I
(m)
a are the associated indicators.

Theorem 3.4. The importance sampling estimator qt,n(a) of the exceedance probabil-

ity qt(a), using the alternative measure Q that corresponds to the exponential twist

θ(a⋆) = arg sup
θ
(θ⊤a⋆ − Λ(θ)),

with a⋆ := arg infx∈A Λ⋆(x), is asymptotically efficient.

Proof. We provide the proof for d⋆ = 1, followed by a proof by example for d⋆ = 2,

which is easily extended for d⋆ > 2. For d⋆ = 1, we first observe that Theorem 3.1

yields that, using that we assumed a1 > µ1,

lim
t→∞

1

t
log qt(a1) = − inf

x⩾a1
Λ⋆(x) = −Λ⋆(a1).

Define

θ(a1) := arg sup
θ
(θa1 − Λ(θ));

it is straightforward to argue that θ(a1) is positive for a1 > µ1. Letting I be the

indicator function of the event {Z1(t) ⩾ a1t}, Q the probability measure correspond-

ing to exponentially twisting the original measure by θ(a1), and Lt the appropriate

likelihood, we now have that

qt(a) = EQ[LtI].

As an aside, observe that in this setting, unlike the one discussed in Section 3.6.2, we

do not have that Lt = 1 almost surely under Q. This is an immediate consequence of

the fact that we constructed Q such that limt→∞ EQZ1(t)/t = a, so that the central

limit theorem implies that in roughly half of the runs, we have that I = 1. The

likelihood ratio can be evaluated by mimicking the calculations in Section 3.6.2. We

thus obtain, leaving out indices in this single-dimensional case,

Lt = exp

(
−
(
1− f(mU(θ(a1)))

) ∫ t

0

λ(s) ds

)
e−θ(a1)Z1(t)

× exp

N(t)∑
r=1

log ℓ(Br)

( mU(θ(a1))

f(mU(θ(a1)))

)N(t)

.
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Using that Λ(θ) = λ(f(mU(θ)) − 1) and mB(c (f(z) − 1)) − log f(z) + log z = 0

(the latter identity being a consequence of (3.16)), and applying essentially the same

majorizations as the ones used in Section 3.6.2, we readily obtain that

qt(a) = EQ[LtI] ⩽ eΛ(θ(a1)) t e−θ(a1)Z1(t)I.

The event {I = 1} is equivalent to {Z1(t) ⩾ at}, so that

qt(a) ⩽ eΛ(θ(a1)) t e−θ(a1) at = e−Λ
⋆(a1) t.

We have thus obtained that

qt(a1) ⩽ e−Λ
⋆(a1) t,

which can be seen as a variant of the classical Chernoff bound. The asymptotic

efficiency for d⋆ = 1 follows directly now. To this end, first note that using the very

same reasoning we also find that

EQ[L
2
t I] ⩽ e−2Λ

⋆(a1) t,

so that also VarQ[LtI] ⩽ e−2Λ
⋆(a1) t. Combining this with Theorem 3.1, we conclude

that in this single-dimensional case, we have asymptotic efficiency under the measure

Q defined above.

We now move to the case d⋆ = 2, for which Theorem 3.1 gives

lim
t→∞

1

t
log qt(a) = − inf

(x1,x2)∈A
Λ⋆(x).

Due to the convexity of the contour lines of Λ⋆(a), with a⋆ the optimizing a ∈ A,

three situations can occur: (i) a⋆ = a, (ii) a⋆1 = a1 and a⋆2 > a2, and (iii) a⋆1 > a1
and a⋆2 = a2. As, by symmetry, cases (ii) and (iii) are conceptually the same and can

therefore be treated identically, we restrict ourselves to discussing cases (i) and (ii)

only. Let, as before, θ(a⋆) be the optimizing argument in the definition of Λ⋆(a).

In case (i), using standard properties of the Legendre transform, we have that

θ1(a
⋆) =

∂

∂a1
Λ⋆(a⋆) > 0, θ2(a

⋆) =
∂

∂a2
Λ⋆(a⋆) > 0.

We let Q correspond to the θ(a⋆)-twisted version of the original probability measure.

Going through the same steps as in the case d⋆ = 1, we obtain that

qt(a) = EQ[LtI] ⩽ eΛ(θ(a
⋆)) t e−θ1(a

⋆)Z1(t)−θ2(a⋆)Z2(t).

Then note that the right-hand side of the expression in the previous display is, on the

set {I = 1} = {Z1(t) ⩾ a⋆1 t, Z2(t) ⩾ a⋆2 t}, bounded from above by

eΛ(θ(a
⋆)) t e−θ1(a

⋆) a⋆1t−θ2(a⋆) a⋆2t = e−Λ
⋆(a⋆) t.
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This implies qt(a) ⩽ e−Λ
⋆(a⋆) t, but in addition that VarQ[LtI] ⩽ e−2Λ

⋆(a⋆) t. We

conclude, using the same reasoning as before, that in this case twisting by θ(a⋆) yields

asymptotic efficiency.

Case (ii) works similarly. Observe that now (using that the line x = a1 is a tangent

of the contour lines of the Legendre transform)

θ1(a
⋆) =

∂

∂a1
Λ⋆(a⋆) > 0, θ2(a

⋆) =
∂

∂a2
Λ⋆(a⋆) = 0.

The intuition is that in this case, if Z1(t) ⩾ a1t, then with high probability also

Z2(t) ⩾ a2t, as reflected by the fact that

lim
t→∞

1

t
logP

(
Z1(t)

t
⩾ a1,

Z2(t)

t
⩾ a2

)
= lim

t→∞

1

t
logP

(
Z1(t)

t
⩾ a1

)
.

Let Q be the θ(a⋆)-twisted version of the original probability measure. After straight-

forward algebra, we now obtain that

qt(a) = EQLtI ⩽ eΛ(θ(a
⋆)) t e−θ1(a

⋆)Z1(t) = e−Λ
⋆(a⋆) t

and VarQ[LtI] ⩽ e−2Λ
⋆(a⋆) t. Hence, also in this case twisting by θ(a⋆) yields asymp-

totic efficiency.

It can be seen in a direct manner that the same procedure (i.e., working with a

twist θ(a⋆) with non-negative entries) can be followed for any d⋆ larger than 2. We

have thus established the stated result.

We finish this subsection by briefly discussing a related, intrinsically more compli-

cated, rare-event probability. Observe that qt(a) corresponds to the intersection of the

events {Z1(t) ⩾ a1t}, . . . , {Zd⋆(t) ⩾ ad⋆t}. Consider now, rather than the intersection

of events, their union, e.g., in the case d⋆ = 2,

P
(
Z1(t)

t
⩾ a1 or

Z2(t)

t
⩾ a2

)
.

Assume that µ < a, to make sure that we are dealing with a rare event probability

and let I denote the indicator of the union event.

Let Ac be the complement of (−∞, a1) × (−∞, a2). Theorem 3.1 asserts that, as

t→ ∞,
1

t
logP

(
Z1(t)

t
⩾ a1 or

Z2(t)

t
⩾ a2

)
→ − inf

x∈Ac
Λ⋆(x).

With a⋆ := arg infx∈Ac Λ⋆(x), suppose that we twist by θ(a⋆). If it happens that

a⋆1 < a1 and a⋆2 = a2, then, following the reasoning applied above, θ1(a) = 0 and
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θ2(a) > 0. When simulating under this measure, one could however have that I = 1

due to Z1(t) ⩾ a1t (despite the fact that it is more likely to see Z2(t) ⩾ a2t). A similar

effect occurs when a⋆1 = a1 and a⋆2 < a2. The implication is that in those cases we do

not have a bound on the likelihood ratio Lt (as opposed to the case of an intersection

of events; see the above analysis for qt(a)). There are various ways to deal with this

inherent complication; see e.g., the discussions on this issue in [20, 61]. The most

straightforward solution is to use the asymptotically efficient algorithm featured in

Theorem 3.4 to separately estimate the three probabilities

P
(
Z1(t)

t
⩾ a1,

Z2(t)

t
⩾ a2

)
, P

(
Z1(t)

t
⩾ a1

)
, P

(
Z2(t)

t
⩾ a2

)
,

and to add up the resulting estimates.

3.7 Examples and Numerical Illustrations

In this section, we provide a set of simulation experiments that illustrate the proposed

rare event simulation algorithms and assess the achievable efficiency gains relative to

conventional simulation methods. All simulations have been conducted in Python;

the code is available from the authors upon request. Throughout this section, we

consider the bivariate setting for both the Hawkes process N (·) = (N1(·), N2(·))⊤ and

the compound process Z(·) = (Z1(·), Z2(·))⊤, i.e., we set d = d⋆ = 2.

3.7.1 Ruin probability

Without loss of generality, we focus in this subsection on the net cumulative claim

process corresponding to the first component, i.e., Y1(t) = Z1(t) − rt. Our objective

is to compute the ruin probability

p(u) = P(∃ t > 0 : Y1(t) > 0) = P(τu <∞) = EQ[Lτu ],

where in the previous display we have used the notations that have been introduced

in Sections 3.5 and 3.6. As before, it is assumed that the net profit condition (3.48)

is in place. With n denoting the number of runs, we let pn(u) denote our importance

sampling estimator, see Eqn. (3.67).

We distinguish between the cases where the marks are deterministic and random. It

is anticipated that, due to the increased variability of the driving Hawkes process, the

ruin probabilities will be higher under random marks than under deterministic marks

(obviously assuming that the mean mark sizes in the random mark model equal their
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Figure 3.1. Convergence of u−1 log pn(u) to the logarithmic decay rate −θ⋆ for the marginal

process Y1(·) in the bivariate model with deterministic marks. Chosen parameters are λ1 =

λ2 = 0.5, α1 = 2, α2 = 1.5, β11 = 0.5, β12 = 0.25, β21 = 0.3, β22 = 0.4, EU11 = 2,

EU12 = EU21 = 2.5, EU22 = 3 and r = 8. In this setting, solving Ψ1(θ
⋆) = 0 yields

θ⋆ = 0.097.

counterparts in the deterministic mark model). By applying our efficient simulation

approach we can quantify this effect.

In case of deterministic marks, the model primitives are assumed to take the fol-

lowing form. For i, j = 1, 2, we take

gij(t) ≡ gi(t) = e−αit, Bij = βij, Uij ∼ Exp(uij),

where αi, βij, uij > 0. Note that due to the deterministic marks, the likelihood ratio

Lτu given in Eqn. (3.66), simplifies considerably. Also note that in this case mUij
(θ) =

uij(uij − θ)−1 for any θ < uij and i, j = 1, 2. The specific parameters used in the

simulation experiments are provided in the captions of the figures.

In order to be able to evaluate the likelihood ratio Lτu , we first calculate the ‘twist

vector’ (θ⋆, 0), where θ⋆ is found by solving Ψ1(θ
⋆) = 0. We then exponentially twist

Y (·) by (θ⋆, 0), using the change of measure introduced in Section 3.6.1, enabling us

to sample n times the likelihood ratio Lτu under the measure Q, after which we can

compute the importance sampling estimator pn(u). Recall that under the measure

Q, we have that the event {τu < ∞} happens with probability one since the twisted

process has positive drift and will hit any level u > 0. Figure 3.1 illustrates the validity

of Theorem 3.2 by showing the convergence of u−1 log pn(u) to the logarithmic decay

rate −θ⋆ as u grows large; it, in addition, provides insight into the speed of convergence

for this specific instance.
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Figure 3.2. Convergence of u−1 log pn(u) to the logarithmic decay rate −θ⋆ for the marginal

process Y1(·) in the bivariate model with random marks. Chosen parameters are λ1 = λ2 =

0.5, α1 = 2, α2 = 1.5, EB11 = 0.5, EB12 = 0.25, EB21 = 0.3, EB22 = 0.4, EU11 = 2,

EU12 = EU21 = 2.5, EU22 = 3 and r = 8. In this setting, solving Ψ1(θ
⋆) = 0 yields

θ⋆ = 0.082.

In the case of random marks, we consider the following instance:

gij(t) ≡ gi(t) = e−αit, Bij ∼ Exp(γij), Uij ∼ Exp(uij),

where αi, γij, uij > 0. To study the effect of the random marks, in our experiment we

take EBij = 1/γij = βij (recalling that the βij were the deterministic marks that we

have used in the first experiment). As before, we need to evaluate the likelihood ratio

Lτu , for which we first solve the equation Ψ1(θ
⋆) = 0. This requires us to compute

the fixed point Eqn. (3.16) with random marks, where the i.i.d. assumption that was

imposed on the marks Bij implies that, for j = 1, 2, we have

fj(z) = zj
γ1j

γ1j − c1(f1(z)− 1)

γ2j
γ2j − c2(f2(z)− 1)

. (3.73)

Then we again exponentially twist Y (·) by (θ⋆, 0) to sample under the measure Q and

compute Lτu . Figure 3.2 confirms convergence of u−1 log pn(u) to −θ⋆. Note that the

decay rate −θ⋆ is higher than in the case with deterministic marks, reflecting that the

increased variability due to the random marks leads to a higher ruin probability.

In the next experiment we study the efficiency of the proposed estimator in terms

of the number of runs needed to reach a predefined level of precision. As before, we

consider ruin in the first component in the bivariate model. We compare the impor-

tance sampling estimators in the setting with deterministic and random marks. We

continue generating runs until the relative standard error of the importance sampling
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estimator becomes less than the precision parameter ϵ > 0. More precisely, we denote

the relative standard error (after n runs, that is) and the number of required runs by

ϵn :=

√
vn,IS(u)

pn(u)
√
n
, n̂ := inf{n ∈ N : ϵn < ϵ}, (3.74)

respectively, where

vn,IS(u) :=
1

n

n∑
m=1

(
L(m)
τu − pn(u)

)2
.

We also compare the number of runs needed for the deterministic marks n̂d and the

random marks n̂r, with the associated Lundberg bounds, see Eqn. (3.71). Note that

n̂d and n̂r vary per experiment; we remedy this by performing the entire procedure

multiple times and taking the average of the obtained numbers. The twist parameter

corresponding to deterministic marks is denoted by θ⋆d, its counterpart for random

marks by θ⋆r . The numbers in Table 3.1 confirm that random marks consistently lead

to higher ruin probabilities. In addition, as expected, the number of runs needed grows

at a very modest pace (despite the fact that p(u) decays essentially exponentially in

u).

u e−θ
⋆
du pn̂d

(u) n̂d e−θ
⋆
ru pn̂r

(u) n̂r

1 9.07 ·10−1 3.15 ·10−1 109 9.21 ·10−1 3.32 ·10−1 150

2 8.23 ·10−1 2.65 ·10−1 122 8.48 ·10−1 2.69 ·10−1 173

5 6.15 ·10−1 1.52 ·10−2 128 6.62 ·10−1 1.75 ·10−1 199

10 3.79 ·10−1 7.89 ·10−2 136 4.39 ·10−1 8.45 ·10−2 232

20 1.43 ·10−1 2.28 ·10−2 142 1.92 ·10−1 2.68 ·10−2 267

50 7.78 ·10−3 8.89 ·10−4 204 1.62 ·10−2 1.64 ·10−3 386

100 6.05 ·10−5 5.83 ·10−6 245 2.64 ·10−4 2.18 ·10−5 533

200 3.66 ·10−9 3.49 ·10−10 302 6.95 ·10−8 4.70 ·10−9 595

Table 3.1. Ruin probabilities, Lundberg bounds, and number of runs needed to reach

precision of ϵ = 0.05, for deterministic and random marks. Chosen parameters are:

λ1 = λ2 = 0.5, α1 = 2, α2 = 1.5, EB11 = 0.5, EB12 = 0.25, EB21 = 0.3, EB22 = 0.4,

EU11 = 2, EU12 = EU21 = 2.5, EU22 = 3 and r = 8. The twist parameters are θ⋆d = 0.097

and θ⋆r = 0.082.

In the remainder of this subsection, we consider the setting of random marks. In the

next experiment we assess the computational advantage of the importance sampling

estimator (using the measure Q; indicated by subscript IS) over the conventional

Monte Carlo estimator (using the measure P; indicated by subscript MC). Our goal is

to compare the time it takes for both estimators to get a sufficiently precise estimate
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of p(u). For the IS estimator, we use Eqn. (3.74). For the conventional MC estimator

based on n runs, denoted by pn,MC(u), we have that

ϵn =

√
vn,MC(u)

pn,MC(u)
√
n
≈ 1√

pn,MC(u)n
, (3.75)

since the variance vn,MC(u) := pn,MC(u)(1− pn,MC(u)) ≈ pn,MC(u) for small probabili-

ties.

In Table 3.2, we show the estimates of the ruin probabilities using MC and IS,

including the average number of runs needed (in the table denoted by n̂MC and n̂IS).

As the absolute duration of each run highly depends on the specific hardware used,

the programming language, the number of cores, etc., we decided to work with the

speedup ratio, denoted by κ, which is the ratio of the simulation time needed under

MC (to obtain the desired precision, that is) and its counterpart under IS.

While MC is actually more efficient for very low values of u, IS takes over already

for moderate u. For u larger than 60, it turned out even infeasible to obtain an

MC estimate within a reasonable amount of time, whereas IS estimates can still be

efficiently produced. For instance, by extrapolating the results we found for smaller

values of u, MC would take approximately 18 hours for u = 70 in our simulation

environment; it would take even 1200 hours for u = 100. In these cases, we estimated

κ by extrapolation of the running times under MC (growing effectively exponentially

in u) and those under IS (growing effectively linearly in u); in the table these estimated

values are given in italics. We conclude from the table that the speedup achieved by

applying IS can be huge, particularly in the domain that ruin is rare; for u = 300 the

speedup is expected to be as high as 9.00 · 1015. We also remark that our approach

yields the same quantitative results as the approach taken in [73], since our choice of

ϵ = 0.05 corresponds to their relative precision of 10% with respect to a 95% confidence

interval (when approximating the quantile value 1.96 by 2).

3.7.2 Exceedance probability

In this subsection, we numerically illustrate the results of the simulation procedure

proposed in Section 3.6.3. We consider the simulation-based computation of the bi-

variate exceedance probability

qt(a1, a2) = P
(
Z1(t)

t
⩾ a1,

Z2(t)

t
⩾ a2

)
,

where we assume (a1, a2) ̸⩽ (µ1, µ2) := limt→∞(Z1(t)/t, Z2(t)/t) to ensure that we are

dealing with an event that becomes increasingly rare as t→ ∞. By Theorem 3.1,

lim
t→∞

1

t
log qt(a1, a2) = − inf

(x1,x2)∈A
Λ⋆(x1, x2), (3.76)
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u pn,MC(u) n̂MC pn,IS(u) vn,IS(u) n̂IS κ

1 3.31 ·10−1 807 3.34 ·10−1 4.92 ·10−2 150 4.62 ·10−1

2 2.71 ·10−1 1095 2.69 ·10−1 3.47 ·10−2 173 3.60 ·10−1

3 2.39 ·10−1 1357 2.37 ·10−1 2.41 ·10−2 187 3.22 ·10−1

5 1.65 ·10−1 2013 1.61 ·10−1 1.61 ·10−2 199 3.85 ·10−1

10 8.40 ·10−2 4368 8.45 ·10−2 4.19 ·10−3 232 5.89 ·10−1

20 2.71 ·10−2 14012 2.68 ·10−2 4.92 ·10−4 267 1.38 ·100

30 9.71 ·10−3 38639 1.02 ·10−2 7.29 ·10−5 306 3.84 ·100

40 4.08 ·10−3 96074 4.01 ·10−3 1.16 ·10−5 355 1.12 ·101

50 1.62 ·10−3 263106 1.64 ·10−3 2.44 ·10−6 386 3.96 ·101

60 6.55 ·10−4 747083 6.46 ·10−4 4.36 ·10−7 401 1.43 ·102

70 n/a n/a 2.77 ·10−4 8.45 ·10−8 410 4.98 ·10 2

80 n/a n/a 1.12 ·10−4 1.64 ·10−8 460 1.67 ·10 3

100 n/a n/a 2.18 ·10−5 5.98 ·10−10 533 2.04 ·10 4

200 n/a n/a 4.70 ·10−9 3.51 ·10−17 595 1.18 ·10 10

300 n/a n/a 1.25 ·10−12 2.71 ·10−24 683 9.00 ·10 15

Table 3.2. Estimation of the ruin probability p(u) for the marginal ruin process Y1(·).
Chosen parameters are as in the caption of Figure 3.1.

where A = [a1,∞)×[a2,∞). Denote the minimizer of the infimum on the RHS of (3.76)

by a⋆ = (a⋆1, a
⋆
2), which can be obtained using standard optimization techniques since

Λ∗(·) is a convex function.

Consider estimating qt(a1, a2) by applying importance sampling. More precisely,

with I(a1,a2) denoting the indicator of the event we are interested in, and Lt the likeli-

hood ratio given in Eqn. (3.66), we have

qt(a1, a2) = EQ[LtI(a1,a2)]. (3.77)

With n denoting the number of runs, let qt,n(a1, a2) be the importance sampling esti-

mator for qt(a1, a2) as defined in Eqn. (3.72). To find the twist parameter, we solve

the optimization problem

θ(a⋆) = (θ1(a
⋆
1, a

⋆
2), θ2(a

⋆
1, a

⋆
2)) = argsupθ∈DΛ

(θ⊤a⋆ − Λ(θ)).

Figure 3.3 illustrates the behavior of qt(a1, a2) as t grows, converging to− infx∈A Λ⋆(x) =

−Λ⋆(a), as was stated in Eqn. (3.76). We chose a1 = 10 > 3.90 = µ1 and a2 = 12 >

4.76 = µ2, such that {Z1(t) ⩾ a1t, Z2(t) ⩾ a2t} is an increasingly rare event as t

grows. For our specific parameters θ(a⋆) > 0 (componentwise, that is), corresponding

to a⋆ = a = (a1, a2). Intuitively, this means that the most probable way that the

process (Z1(t)/t, Z2(t)/t)t∈R+ reaches the region A = [a1,∞) × [a2,∞) is a straight

line from the origin to (a1, a2).
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Figure 3.3. Convergence of q̂t(a1, a2) to the logarithmic decay rate −Λ⋆(a⋆) for the bivari-

ate process (Z1(t)/t, Z2(t)/t)t∈R+. Chosen parameters are: a1 = 10, a2 = 12, λ1 = λ2 = 0.5,

α1 = 2, α2 = 1.5, EB11 = 0.5, EB12 = 0.25, EB21 = 0.3, EB22 = 0.4, EU11 = 2,

EU12 = EU21 = 2.5, EU22 = 3. Since a⋆ = a, the decay rate is −Λ⋆(a) = −0.276 and

the twist parameter is θ⋆(a) = (0.0376, 0.0256).

Next, we quantify the computational advantage of the IS estimator over the con-

ventional MC estimator, using the same approach as the one underlying Table 3.2. As

before, we run the simulation for both methods until the relative standard error ϵn is

under our desired precision ϵ. Table 3.3 shows the comparison between MC and IS, for

different values of t. When increasing t, MC becomes infeasible due to the very steeply

increasing number of runs needed as well as the simulation time needed per run. Al-

ready at t = 15, it would take approximately 69 hours in our simulation environment.

IS, however, remains feasible, even in the domain of extremely small probabilities.

Note that the number of runs needed for IS does not increase in a monotone fashion,

which is due to the fact that for small t the process is not yet in the regime where

the exceedance event is rare. We also note the speedup ratio κ of the exceedance

probabilities increases more steeply (in t) than that of the ruin probabilities (in u).

3.8 Concluding Remarks

This paper has studied large deviations of multivariate compound Hawkes processes,

with the underlying Hawkes process having a general decay function and random

marks. In order to prove the LDP, the main technical hurdle concerned proving that

the limiting cumulant is steep. Our steepness proof is methodologically novel, in that

we manage to show that the derivative of the cumulant grows to infinity when ap-
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t qt,MC(a) n̂MC qt,IS(a) vt,IS(a) n̂IS κ

1 2.58 ·10−2 16620 2.61 ·10−2 8.27 ·10−3 4879 6.56 ·10−1

2 1.83 ·10−2 21983 1.78 ·10−2 3.47 ·10−3 4378 9.98 ·10−1

3 1.45 ·10−2 29076 1.42 ·10−2 1.92 ·10−3 3800 1.63 ·100

5 7.88 ·10−3 50869 7.95 ·10−3 5.67 ·10−4 3589 3.66 ·100

10 1.75 ·10−3 205934 1.69 ·10−3 2.73 ·10−5 3818 3.04 ·101

15 n/a n/a 3.64 ·10−4 1.40 ·10−6 4223 3.24 ·10 2

20 n/a n/a 7.83 ·10−5 7.10 ·10−8 4631 3.92 ·10 3

25 n/a n/a 1.87 ·10−5 4.48 ·10−9 5123 5.04 ·10 4

30 n/a n/a 3.84 ·10−6 2.23 ·10−10 6043 6.25 ·10 5

40 n/a n/a 2.18 ·10−7 8.05 ·10−13 6749 1.28 ·10 8

50 n/a n/a 1.15 ·10−8 2.69 ·10−15 8209 3.43 ·10 10

75 n/a n/a 9.25 ·10−12 2.16 ·10−24 10106 3.93 ·10 16

100 n/a n/a 6.31 ·10−15 1.44 ·10−27 11926 5.56 ·10 22

Table 3.3. Estimation of the exceedance probability qt(a). Chosen parameters are as in the

caption of Figure 3.3

.

proaching the boundary of its domain, but, remarkably, without having an explicit

characterization of this domain. Then the logarithmic asymptotics of the correspond-

ing ruin probability are identified, the proof using (in the lower bound) the LDP. In

addition, the logarithmic asymptotics of the multivariate net cumulative claim at-

taining a rare value (at a given point in time, that is) are established. The final

contribution of the paper concerns importance sampling based rare event simulation

procedures, shown to be asymptotically efficient.

An interesting topic for future research is to consider other types of deviations

for multivariate Hawkes processes, such as precise or process-level large deviations.

Another interesting problem is to derive large deviations results for non-linear mul-

tivariate Hawkes processes. Since the non-linear Hawkes process is not a branching

process, this setting requires a genuinely different type of analysis.

3.A Steepness in the Univariate Case

In this appendix, we prove steepness of the limiting cumulant in the univariate case.

The appendix has two objectives. First, in this single-dimensional setting, elements

that look intricate in the proof of Theorem 3.1 now simplify and become significantly

more transparent; indeed, this univariate proof helps the reader navigating the proof

that we gave for the multivariate case. Second, our proof is of a generic nature, in that
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it does not rely on the fact that in this univariate setting the distribution of the cluster

size is explicitly known. This distinguishes our approach from the one followed in [69],

which explicitly uses that the cluster size has a Borel distribution. In the multivariate

case, the explicit distribution of the joint cluster size is unknown, thus prohibiting the

approach of [69].

Consider the case of d = d⋆ = 1; we leave out all indices. Let S denote the total

number of events in a cluster. We know that

Λ(θ) := lim
t→∞

1

t
logE

[
eθZ(t)

]
= λ(E

[
mU(θ)

S
]
− 1), (3.78)

where mU(θ) = E[eθU ] is the moment generating function of U and λ is the base rate.

To guarantee stability of the Hawkes process, we assume the univariate counterpart of

Assumption 3.1, that is,

µ = E[B]c = E[B]

∫ ∞
0

g(v) dv ∈ (0, 1). (3.79)

In this univariate case, the probability generating function f(·) of the cluster size S

satisfies the fixed-point representation

f(z) = zE
[
eBc(f(z)−1)]. (3.80)

First, we take derivatives on both sides of Eqn. (3.80) to obtain

f ′(z) = E
[
eBc(f(z)−1)]+ zf ′(z)E

[
Bc eBc(f(z)−1)],

which, due to (3.80), can be rewritten as

f ′(z) =
f(z)/z

1− b(z)
,

where b(z) := z E[Bc eBc(f(z)−1)]. The next step is to show that there exists ẑ ⩾ 1

such that b(ẑ) = 1. The domain Df is obtained from Proposition 3.1 when d = 1 as

Df = [0, ẑ ], where ẑ > 1 is given by

ẑ = E[Bc eBc(x̂−1)]−1, (3.81)

and where x̂ > 1 solves the equation

xE[Bc eBc(x−1)] = E[eBc(x−1)], (3.82)

see also [54, Theorem 3.1.1]. Since f ′(z) is well-defined for 0 < z < ẑ, we consider

what happens when we approach the boundary ẑ. We compute, using Eqns. (3.81)

and (3.82) and the fact f(ẑ) = x̂, that

b(ẑ) = ẑ E[Bc eBc(x̂−1)] = 1. (3.83)
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Hence, we obtain

lim
z↑ẑ

f ′(z) = lim
z↑ẑ

f(z)/z

1− b(z)
= ∞, (3.84)

also noting that for the numerator f(ẑ)/ẑ = x̂/ẑ > 0.

Concerning the steepness of Λ(·), let there be a θ̂ > 0 such that mU(θ̂) = ẑ, which

is the univariate counterpart of Assumption 3.3. We then have that

lim inf
θ↑θ̂

Λ′(θ) ⩾ λE[U ]E
[
SmU(θ̂)

S−1] ⩾ λE[U ] f ′(ẑ) = ∞, (3.85)

where the first inequality is due to Fatou’s lemma, and the second inequality is due to

m′U(θ) ⩾ E[U ] for any θ ⩾ 0.
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Abstract

We provide probabilistic and computational results on Markovian multivariate Hawkes 
processes and induced population processes. By applying the Markov property, we characterize 
in closed form a joint transform, bijective to the probability distribution, of the population 
process and its underlying intensity process. We demonstrate a method that exploits the 
transform to obtain analytic expressions for transient and stationary multivariate moments 
up to arbitrary order, as well as auto- and crosscovariances. We reveal a nested sequence of 
block matrices that yields the moments in explicit form and brings important computational 
advantages. We also establish the asymptotic behavior of the intensity of the multivariate 
Hawkes process in its nearly unstable regime, under a specific parameterization. In extensive 
numerical experiments, we analyze the computational complexity, accuracy and efficiency of 
the established results.
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Chapter 4

Markovian Multivariate Hawkes

Population Processes: Efficient

Evaluation of Moments

4.1 Introduction

Since the onset of globalization, the mechanisms according to which events spread have

become increasingly complex. Events involving disease contagion, financial panic, news

that goes viral, are all subject to forms of propagation that occur through time and

space, be it across human populations, equity markets, or news outlets. A multitude

of mathematical models have been proposed to describe the corresponding underlying

dynamics.

Multivariate point processes constitute one such class of models that describe the

random nature of the arrival, and subsequent spread, of events, in the time as well as

space domain. In particular, the subclass of multivariate Hawkes processes ([45, 46])

provides a rich structure that is capable of capturing contagious dynamics. These

Hawkes processes allow for flexible dependencies of events, due to the inherent feedback

mechanisms known as self - and cross-excitation. Recently, the Hawkes process has

been increasingly used as the arrival process of infinite-server queues ([26, 57]), in

which arrived events at some point leave the system. Such infinite-server queues can

be seen as population processes, where individuals are born (i.e., arrive) according to

a Hawkes process and die (i.e., leave) after a random time. Throughout this paper, we

use the terminology of infinite-server queues and population processes interchangeably.

A clear and relevant motivation to study a Hawkes-fed infinite-server queue is to ac-

count for infected and recovered subjects in a population. Hawkes processes have been

widely applied in epidemiology, in conjunction with SIR models ([67]) and dynamic

contagion models, e.g., in the context of the COVID-19 pandemic ([16]). An impor-
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tant strand of research considers a multivariate framework to allow for cross-exciting

dynamics between subpopulations (for instance, residing at different geographic loca-

tions). Also in various other domains this type of model offers a natural framework,

for example when considering the number of simultaneous online visitors of a specific

website or to describe social interaction. Multivariate Hawkes processes have recently

gained interest in the context of modeling customer support contact centers ([25]).

When analyzing infinite-server queues with multivariate Hawkes input, the main

challenge lies in unraveling, and tractably representing, its inherently complex proba-

bilistic structure. In this paper our main objective is to devise techniques to efficiently

and accurately evaluate moments. We consider the Markovian case, i.e., the case in

which the excitation functions are exponentially decaying; see ([45, 62]). The Markov

property is used to obtain a characterization of the transform of the joint process, that

is, the Hawkes intensity process and the infinite-server queue, in terms of a system of

differential equations.

Contributions. This paper makes five contributions. We start by deriving in closed

form a joint transform — bijective to the joint probability distribution — of the

multivariate population process and its underlying intensity process, exploiting their

Markovian nature. We allow for general distributions of the intensity jump sizes

and allow the processes to be evaluated at potentially multiple future time instances,

thus characterizing all cross-sectional and temporal probabilistic features. Second,

we employ this joint transform to obtain explicit, recursive expressions for both the

transient and stationary multivariate cross-moments. We thus extend earlier results

pertaining to the case that the underlying Hawkes process is single-dimensional ([24,

26]). Third, we show that the higher-order transient and stationary moments can be

obtained in closed form from a nested sequence of block matrices, having important

computational advantages. Fourth, for a specifically chosen set of parameters, we

establish the limiting behavior of the underlying intensity process of the multivariate

population process in the practically relevant, nearly unstable situation, where the

stability condition is close to being violated; cf. the heavy-traffic regime in queueing

theory.

The final contribution concerns the use of our analytic findings when devising ef-

ficient computational techniques for evaluating moments. To this end, we analyze in

numerical experiments the methods developed in this paper and assess their accuracy

and efficiency. The methods we develop show superior performance in terms of speed

and accuracy when compared to the computational alternative of applying finite differ-

ence schemes of the joint transform. Our computational approach is fast and accurate:

it provides near-instant response that is exact up to machine precision. When using the

nested block matrices, it has the attractive feature that the computation speed does
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not depend on the value of the considered time horizon. Moreover, when compared

to the simulation alternative, using a large number of Monte Carlo simulation runs to

approximate the object of interest, the performance gain is even orders of magnitude

larger. The computer codes that implement the methods developed in this paper are

available at https://github.com/RaviarKarim/HawkesMarkov.

In the computation of the transient and stationary moments, we focus on two set-

tings, which are in a sense each others dual. Namely the bivariate setting with moments

of arbitrary order and the multivariate model with moments up to second order. The

generic recursive structure for the transient and stationary moments is similar. How-

ever, in the transient setting, we obtain recursive systems of non-homogeneous linear

differential equations, whereas in the stationary setting, we obtain recursive systems

of linear algebraic equations.

An important application that our results make possible, is moment-based estima-

tion of multivariate Hawkes processes. Such an estimation approach requires evalu-

ating a collection of moments, auto-covariances and cross-covariances a (very) large

number of times, for the parameter vector proposed at each new iteration of the

optimization routine. Existing approaches to evaluating moments and other distri-

butional characteristics are computationally prohibitively expensive for this purpose.

One might employ the explicit approximate moments, obtained from the infinitesi-

mal Markov generator using operator methods and Taylor expansions applied to short

time intervals, as in [2]. This approach, however, requires data sampled at least at the

daily frequency. Our approach is based on exact expressions of the moments, auto-

covariances and cross-covariances over time intervals of arbitrary length, and their

numerical evaluation remains fast and accurate. Another advantage of our approach

is that it makes comparative statics possible, i.e., it provides an efficient, tractable link

between the objects of interest and the parameters of the process.

Organization. This paper is organized as follows. In Section 4.2, we introduce the

Markovian multivariate Hawkes process and the induced population process. In Sec-

tion 4.3, we derive a characterization of the joint transform using the Markov property

of the process. Subsequently, we use this result to obtain relations for the transient

and stationary moments. In Section 4.4, we show the underlying recursive structure

in the computation of moments of certain order and dimension. In Section 4.5, we

focus on the bivariate setting, revealing a nested block structure of matrices that

characterize the moments, enabling fast computation. In Section 4.6, we analyze the

nearly unstable case for the intensity of the process. Section 4.7 provides our numeri-

cal experiments. Conclusions are in Section 4.8 and some proofs are relegated to the

Appendix.
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4.2 Multivariate Hawkes Populations

In this section we define the multivariate Hawkes process, by means of the associated

conditional intensity function, as well as its induced population process. Hawkes pro-

cesses, first introduced in a series of papers [45, 46, 47], are a class of point processes

that exhibit self-exciting behavior, in the sense that the current value of the associated

intensity function depends on the history of the point process.

In this paper, we focus on multivariate Hawkes processes of the Markovian type.

Consider a d-dimensional point processN (·) ≡ (N (t))t∈R+ = ((N1(t), . . . , Nd(t)))
⊤
t∈R+

,

which records the number of points in each componentNi(t), with i ∈ [d] := {1, . . . , d},
up to and including time t. It is well known that a point process is characterized by

its conditional intensity function λ(t) = (λ1(t), . . . , λd(t))
⊤, see [23, Chapter 7].

Definition 4.1. A Markovian multivariate Hawkes process is a point process N (·),
with N (0) = 0, whose components Ni(·) satisfy

P(Ni(t+∆)−Ni(t) = 0 | Ft) = 1− λi(t)∆ + o(∆),

P(Ni(t+∆)−Ni(t) = 1 | Ft) = λi(t)∆ + o(∆),

P(Ni(t+∆)−Ni(t) > 1 | Ft) = o(∆),

(4.1)

as ∆ ↓ 0, with Ft = σ(N (s) : s ⩽ t) denoting the natural filtration generated by

N (·). Here, each component λi(t) of the intensity function satisfies the mean-reverting

dynamics

dλi(t) = αi(λi − λi(t)) dt+
d∑

j=1

Bij(t) dNj(t), (4.2)

where λi(0) = λi ⩾ 0, αi ⩾ 0, and for each combination of i, j ∈ [d], (Bij(t))t is

a sequence of independent random variables, distributed as the generic non-negative

random variable Bij.

The intuitive explanation behind Definition 4.1 goes as follows. The constants λi
are referred to as the base rates. When a point is generated in component j ∈ [d], Nj(t)

increases by one and makes intensity λi(t), for all i ∈ [d], jump by a value Bij(t) that

is distributed as the random variable Bij. This jump in the intensity λi(t) caused by

Bij(t) increases the probability of new points being generated in component i, thereby

more likely to increase Ni(t). After the jump has occurred, the intensity λi(t) decays

exponentially with rate αi back to the base rate λi. These jumps in intensities and

the subsequent decay is what makes points cluster across time and space. That is, for

any j ∈ [d], when points in Nj(t) cause λj(t) to jump, there is a pure temporal effect
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and we speak of self-excitation, while an effect on λi(t), with i ̸= j, has an additional

spatial effect and we speak of cross-excitation.

It is well-known that with exponential decay the joint process (N (·),λ(·)) is a

Markov process, see e.g. [58, 60, 62]. Furthermore, by applying Itô’s Lemma to

f(t, λi(t)) = eαitλi(t), Eqn. (4.2) can alternatively be expressed as

λi(t) = λi +
d∑

j=1

∫ t

0

Bij(s) e
−αi(t−s) dNj(s), (4.3)

where we used thatN (0) = 0, implying λi(0) = λi. The exponential term in Eqn. (4.3)

can be defined in a function gi(t) := e−αit, known in the literature as the decay func-

tion. We emphasize that only exponentially decaying gi(·) render the joint process

(N (·),λ(·)) a Markov process.

To ensure stability of the multivariate Hawkes process, [46, 12] show that we must

impose a stability condition. In what follows, we assume that the stability condition

applies.

Assumption 4.1. With ρ(·) denoting the spectral radius of a matrix, assume that

ρ(H) < 1, where the matrix H = (hij)i,j∈[d] has elements

hij ≡ E[Bij]

∫ ∞
0

e−αit dt = E[Bij]/αi. (4.4)

In the model discussed in this paper, the Markovian multivariate Hawkes process

will serve as the arrival process of a multivariate population process. Our overarching

goal is to compute various quantities pertaining to the (joint) distribution of the arrival

process and the population process. A similar setup has been considered in [26, 57],

where the univariate Hawkes process serves as the arrival process for an infinite-server

queue in which arriving customers reside for independent and identically distributed

(i.i.d.) amounts of time (often assumed exponentially distributed). The following

definition generalizes that framework to the multivariate setting.

Definition 4.2. Let N (·) be a Markovian multivariate Hawkes process as given in

Definition 4.1. Define the associated Hawkes population process Q(·), with Q(0) = 0,

by setting for each component Qi(t)

Qi(t) :=

∫ t

0

1{Ei(s)>t−s} dNi(s), (4.5)

for any t ⩾ 0 and where (Ei(s))s is a sequence of independent random variables,

exponentially distributed with parameter µi, also independent of the multivariate arrival

process N (t).
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The above definition entails that each arrival in component i ∈ [d] remains in the

system for an exponentially distributed amount of time. In demography, one can

think of Qi(·) as the number of individuals in a subpopulation i ∈ [d], where each

Ei(s) models the lifetime of an individual in subpopulation i. In epidemiology, Qi(·)
would represent the number of individuals infected by a disease at location i ∈ [d],

where Ei(s) would model the duration from infection to recovery (or death). In the

queuing literature, this can be interpreted as a special case of an infinite-server queue.

We note that if µi ≡ 0, then no points ever depart from component i, and hence

Qi(·) ≡ Ni(·). However, in some of the expressions we will encounter in this paper one

must take proper care of taking the limit µi ↓ 0, so as to avoid dividing by zero; note

that if µi = 0, then Qi(·) eventually grows unbounded.

In this paper, we consider Markovian multivariate Hawkes processes and associated

population processes. We conclude this section by briefly discussing various more

general variants. In the first place, one can introduce decay functions gij(·) that

depend on both the origin component j and the destination component i. Moreover,

where in this work we exclusively focus on exponential decay functions, one can work

with more general non-increasing and integrable decay functions, thus also leaving

the Markovian setting. Our analysis fully depends on ‘Markovian reasoning’, and can

therefore not be used in this non-Markovian case. Instead, the process may be analyzed

through the cluster representation, first described in [47], where the Hawkes process

is described as a Poisson cluster process. This approach has been followed in [55] to

study distributional properties in the multivariate setting. Another extension concerns

the nonlinear case, where the intensity depends on an auxiliary function hi : R → R;
see e.g., [12, 74]. In this nonlinear setting, the Hawkes process is not even a Poisson

cluster process and requires different methods of analysis entirely.

The application of our methodology to the class of multivariate Hawkes population

processes may be viewed as a “proof of principle”. Our methodology can, in principle,

be applied to general multivariate Markov processes.

4.3 Transform and Joint Moments

The objective of this section is to analyze the joint transform of (Q(t),λ(t)) for any

fixed t ∈ R+. To this end, define, for given initial values Q(t0) = Q0 ∈ Nd
0 and

λ(t0) = λ0 ∈ Rd
+ for some 0 ⩽ t0 < t, the conditional joint transform

ζt0(t, s, z) = Et0

[ d∏
i=1

z
Qi(t)
i e−siλi(t)

]
:= E

[ d∏
i=1

z
Qi(t)
i e−siλi(t) |Q(t0) = Q0,λ(t0) = λ0

]
,

(4.6)
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where t ⩾ 0, s ∈ Rd
+ and z ∈ [−1, 1]d. In the specific case that t0 = 0, with the

assumed initial conditions Q(0) = 0 and λ(0) = λ, we set

ζ(t, s, z) ≡ ζ0(t, s, z) : = E
[ d∏
i=1

z
Qi(t)
i e−siλi(t)

]
= E

[ d∏
i=1

z
Qi(t)
i e−siλi(t) |Q(0) = 0,λ(0) = λ

]
, (4.7)

where the expectation operator E[·] is understood as the conditional E0[·].

4.3.1 Transform characterization

The following theorem identifies ζt0(t, s, z).

Theorem 4.1. Fix t ∈ R+, and assume Q(t0) = Q0 ∈ Nd
0 and λ(t0) = λ0 ∈ Rd

+ for

some 0 ⩽ t0 < t. Then, for any z ∈ [−1, 1]d, s ∈ Rd
+,

ζt0(t, s, z) =
d∏

j=1

ẑj(t0)
Qj,0 exp

(
− s̃j(t)λj,0 − λjαj

∫ t

t0

s̃j(u)du
)
, (4.8)

where, for t0 ⩽ u ⩽ t and j ∈ [d], the functions ẑj(·) and s̃j(·) satisfy

ẑj(u) = 1 + (zj − 1)e−µj(t−u),

ds̃j(u)

du
+ αj s̃j(u) +

(
1 + (zj − 1)e−µj(u−t0)

)
βj(s̃(u))− 1 = 0,

(4.9)

with boundary condition s̃j(t0) = sj, and βj(s) := E[e−s⊤Bj ] = E[exp(−
∑d

i=1 siBij)].

Proof. See Appendix 4.A.

Corollary 4.1. Fix t ∈ R+, and assume Q(0) = 0 and λ(0) = λ. Then, for any

z ∈ [−1, 1]d, s ∈ Rd
+,

ζ(t, s, z) =
d∏

j=1

exp
(
− λj s̃j(t)− λjαj

∫ t

0

s̃j(v)dv
)
, (4.10)

where, for j ∈ [d] and 0 ⩽ v ⩽ t, the functions s̃j(·) satisfy

ds̃j(v)

dv
+ αj s̃j(v) + (1 + (zj − 1)e−µjv)βj(s̃(v))− 1 = 0, (4.11)

with boundary condition s̃j(0) = sj.
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Using the expression presented in Theorem 4.1, in principle any conditional joint

moment can be obtained. Indeed, for any nλi
, nQi

∈ N0, we have

dnλ1

ds
nλ1
1

· · · dnλd

ds
nλd
d

dnQ1

dz
nQ1
1

· · · dnQd

dz
nQd
d

ζt0(t, s, z)

∣∣∣∣∣
s=0
z=1

= Et0

[ d∏
i=1

(−1)nλiλi(t)
nλiQi(t)

[nQi
]
]
,

(4.12)

i.e., an object composed from (standard) moments of λi(t) and reduced moments of

Qi(t). Note that in (4.12) we have used the standard Pochhammer notation: for

integers m and n we denote m[n] := m(m − 1) · · · (m − n + 1), by convention setting

m[0] := 1.

In the above, we focused on identifying transforms pertaining to a single point

in time. Using similar methods, however, it is possible to derive the transform of

(Q(t),λ(t)) and (Q(t + τ),λ(t + τ)) jointly, for some τ > 0. More precisely, for

y, z ∈ [−1, 1]d and r, s ∈ Rd
+, we consider the object

ζτ (t, r,y, s, z) := E
[ d∏

i=1

y
Qi(t)
i e−riλi(t)z

Qi(t+τ)
i e−siλi(t+τ)

]
, (4.13)

where as before, E[·] is understood as E0[·], with Q(0) = 0 and λ(0) = λ. In addition,

y ⊙ z is the component-wise product of the vectors y and z.

Theorem 4.2. Fix t, τ ∈ R+, and assume Q(0) = 0 and λ(0) = λ. Then, for any

y, z ∈ [−1, 1]d, r, s ∈ Rd
+,

ζτ (t, r,y, s, z) = ζ(t,y ⊙ ẑ(t), r + s̃(t+ τ))
d∏

j=1

exp
(
− λjαj

∫ t+τ

t

s̃j(u)du
)

=
d∏

j=1

exp
(
− λj r̃j(t)− λjαj

∫ t

0

r̃j(v)dv − λjαj

∫ t+τ

t

s̃j(u)du
)
,

(4.14)

where ζ(·) is given by Eqn. (4.10), and where for j ∈ [d], the functions ẑj(·), s̃j(·) and
r̃j(·) satisfy

ẑj(u) = 1 + (zj − 1)e−µj(t+τ−u),

ds̃j(u)

du
+ αj s̃j(u) +

(
1 + (zj − 1)e−µj(u−t)

)
βj(s̃(u))− 1 = 0,

dr̃j(v)

dv
+ αj r̃j(v) +

(
1 + (yj − 1)e−µjv + yj(zj − 1)e−µj(v+τ)

)
β(r̃(v))− 1 = 0,

(4.15)

with boundary condition s̃j(t) = sj and r̃j(0) = rj + s̃j(t + τ), and where 0 ⩽ v ⩽ t

and t ⩽ u ⩽ t+ τ .
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Proof. See Appendix 4.A.

Observe that the result of Theorem 4.2 can be extended to include arbitrarily many

time points t < t1 < t2 < · · · < tk, k ∈ N, by repeated conditioning and applying

Eqn. (4.8). Further, as in Eqn. (4.12), we can obtain corresponding joint moments by

differentiation. This in particular allows us to compute the auto-correlation and auto-

covariance functions of the multivariate Hawkes process and its associated population

process. More precisely, for any t ⩾ 0 and τ > 0, we can compute the auto-correlation

function by

RQ(t, τ) = E
[
Q(t)Q(t+ τ)⊤

]
,

Rλ(t, τ) = E
[
λ(t)λ(t+ τ)⊤

]
,

and the auto-covariance function by

CQ(t, τ) = E
[
Q(t)Q(t+ τ)⊤

]
− E

[
Q(t)

]
E
[
Q(t+ τ)

]⊤
,

Cλ(t, τ) = E
[
λ(t)λ(t+ τ)⊤

]
− E

[
λ(t)

]
E
[
λ(t+ τ)

]⊤
.

4.3.2 Joint moments

We proceed by exploiting the characterization of the joint transform ζ(t, s, z), as given

in Theorem 4.1, to derive a system of linear differential equations for the joint transient

moments pertaining to (λ(t),Q(t)) for a given t ∈ R+, as well as a system of linear

(algebraic) equations for the corresponding stationary moments pertaining to (λ,Q),

where

λ = (λ1, . . . , λd) := lim
t→∞

(λ1(t), . . . , λd(t)),

Q = (Q1, . . . , Qd) := lim
t→∞

(Q1(t), . . . , Qd(t)),
(4.16)

where the limits exist if the stability condition is in place, and in addition all µi are

positive.

We start with the joint transient moments and derive a system of linear differential

equations. Let nQi
and nλi

∈ N be such that
∑d

i=1 nQi
= nQ and

∑d
i=1 nλi

= nλ.

Consider, for given nQ, nλ ∈ N and t ∈ R+, the object

φt(nQ,nλ) := E
[ d∏

i=1

λi(t)
nλiQi(t)

nQi

]
; (4.17)

we call these the joint moments of total order nλ and nQ. To make sure the objects

that we consider are well-defined, we throughout assume that for any j ∈ [d],

E
[ d∏

i=1

B
nλi
ij

]
<∞. (4.18)
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By significantly generalizing the approach of [57] to the multivariate setting, we obtain

a vector-valued ODE to derive the joint transient moments (4.17).

In Appendix 4.A we give the proof of Theorem 4.1. In an intermediate step, sum-

marized in Eqn. (4.79), the following PDE has been derived:

d

dt
E
[
e−s

⊤λ(t)
d∏

n=1

zQn(t)
n

]
−

d∑
j=1

(
αjsj + zjβj(s)− 1

)
E
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
+

d∑
j=1

µj(zj − 1)E
[
Qj(t)e

−s⊤λ(t)
d∏

n=1

z
Qn(t)−1{n=j}
n

]
(4.19)

= −
d∑

j=1

αjsjλjE
[
e−s

⊤λ(t)
d∏

n=1

zQn(t)
n

]
,

where we wrote out the terms using the definition of ζ(t, s, z). The next step is to

repeatedly differentiate the PDE in Eqn. (4.19). This means that, for a given nλ ∈ N,
we start with the PDE (4.19) and differentiate nλ1 , . . . , nλd

times with respect to

s1, . . . , sd, respectively, and then substitute s1 = s2 = · · · = sd = 0. Subsequently,

we differentiate nQ1 , . . . , nQd
times with respect to z1, . . . , zd respectively, and then

substitute z1 = · · · = zd = 1. As will become clear below, this procedure yields a

relation between the joint moments of total order nλ and nQ. To make the notation

concise, we introduce the transient joint moments of total order nλ and nQ by

ψt(nQ,nλ) := E
[ d∏

i=1

λi(t)
nλiQi(t)

[nQi
]
]
, (4.20)

where nQ = (nQ1 , . . . , nQd
) and nλ = (nλ1 , . . . , nλd

); these should be interpreted as

reduced moments as far as the Qi(t) are concerned. Note that once we obtain an

expression for ψt(nQ,nλ), we can compute the joint moments φt(nQ,nλ) as given in

Eqn. (4.17). Doing the repeated differentiation on Eqn. (4.19) and after elementary

algebraic computations, we obtain

d

dt
ψt(nQ,nλ) +

d∑
j=1

(
nλj

(αj − E
[
Bjj

]
) + nQj

µj

)
ψt(nQ,nλ)

=
d∑

j=1

d∑
i=1
i ̸=j

nλi
E
[
Bij

]
ψt(nQ,nλ − ei + ej) +

d∑
j=1

nQj
ψt(nQ − ej,nλ + ej) (4.21)

+
d∑

j=1

αjλjnλj
ψt(nQ,nλ − ej) +

d∑
i=1

d∑
j=1

nλi
nQj

E
[
Bij

]
ψt(nQ − ej,nλ − ei + ej)
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+
d∑

j=1

nλ1∑
m1=0

· · ·
nλd∑

md=0

1{m⩽nλ−2}

d∏
k=1

(
nλk

mk

){
nQj

d∏
i=1

E
[
B

nλi
−mi

ij

]
ψt(nQ − ej,m+ ej)

+
d∏

i=1

E
[
B

nλi
−mi

ij

]
ψt(nQ,m+ ej)

}
;

see Appendix 4.B.2 for details.

Observe that Eqn. (4.21) gives a relation involving mixed moments of λ1(t), . . . , λd(t)

and of Q1(t), . . . , Qd(t) of total order nλ and nQ, expressed in terms of mixed (facto-

rial) moments of lower total order. Note that this identity generalizes Eqn. (3.9) in

[57], with extra terms containing (products of) E[Bij] arising from cross-excitation.

We have thus obtained a linear vector-valued ODE that enables the computation of

the transient joint moments of total order nλ and nQ.

The joint stationary moments of total order nλ and nQ, to be interpreted as reduced

moments as far as the Qi are concerned,

ψ(nQ,nλ) := lim
t→∞

ψt(nQ,nλ) = E
[ d∏

i=1

λ
nλi
i Q

[nQi
]

i

]
, (4.22)

can be identified analogously. Instead of a system of ODEs, we find for the stationary

moments the following system of equations:

ψ(nQ,nλ)
d∑

j=1

(
nλj

(αj − E
[
Bjj

]
) + nQj

µj

)
=

d∑
j=1

d∑
i=1
i ̸=j

nλi
E
[
Bij

]
ψ(nQ,nλ − ei + ej) +

d∑
j=1

nQj
ψ(nQ − ej,nλ + ej) (4.23)

+
d∑

j=1

αjλjnλj
ψ(nQ,nλ − ej) +

d∑
i=1

d∑
j=1

nλi
nQj

E
[
Bij

]
ψ(nQ − ej,nλ − ei + ej)

+
d∑

j=1

nλ1∑
m1=0

· · ·
nλd∑

md=0

1{m⩽nλ−2}

d∏
k=1

(
nλk

mk

){
nQj

d∏
i=1

E
[
B

nλi
−mi

ij

]
ψ(nQ − ej,m+ ej)

+
d∏

i=1

E
[
B

nλi
−mi

ij

]
ψ(nQ,m+ ej)

}
.

Note that Eqn. (4.23) can be interpreted as the stationary version of Eqn. (4.21).

Where in transient case we had to solve a system of linear differential equations, in

the stationary case this has turned into a system of linear algebraic equations.

We illustrate how this can be used to obtain moments of order n ∈ {1, 2}, for

the processes Q(·) = (Q1(·), . . . , Qd(·)) and λ(·) = (λ1(·), . . . , λd(·)). We first focus
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Chapter 4 Markovian Multivariate Hawkes Population Processes

on transient moments and then proceed with the corresponding stationary moments.

We introduce the relevant objects along the way, starting with the matrix E[B] =

(E[Bij])i,j∈[d] and the diagonal matrices

Dα := diag(α1, α2, . . . , αd), Dµ := diag(µ1, µ2, . . . , µd).

Transient moments

We focus on the transient moments ψt(nQ,nλ), where now nQ = (nQ1 , . . . , nQd
) and

nλ = (nλ1 , . . . , nλd
). We separately consider the cases n = 1 and n = 2. To describe

the joint moments of equal order in vector/matrix-form, it turns out that for n = 1

we need a stacked vector, and for n = 2 a stacked matrix, given in detail below.

For n = 1 we define the stacked vector

Σ
(1)
t :=

(
E[λ(t)],E[Q(t)]

)⊤
. (4.24)

For each entry of the vector, we use Eqn. (4.21) to obtain the vector-valued ODEs

d

dt
E[λ(t)] =

(
E[B]−Dα

)
E[λ(t)] +L(0,1),

d

dt
E[Q(t)] = −DµE[Q(t)] + E[λ(t)],

(4.25)

where L(0,1) =
(
α1λ1, α2λ2, . . . , αdλd

)⊤
. It is immediately verified that the solution is

given by

E[λ(t)] = et(E[B]−Dα)λ+

∫ t

0

e(t−s)(E[B]−Dα)ds(α⊙ λ)

= et(E[B]−Dα)λ+ (E[B]−Dα)
−1(et(E[B]−Dα) − I

)
(α⊙ λ),

E[Q(t)] =

∫ t

0

e−(t−s)DµE[λ(s)]ds.

(4.26)

We proceed with n = 2. As indicated at the start of this subsection, in this case we

should work with a stacked matrix. To this end, define

E
[
Q(t)[2]

]
:= E

[
Q(t)Q(t)⊤

]
− diag(E[Q(t)])

= E


Q1(t)

[2] Q1(t)Q2(t) · · · Q1(t)Qd(t)

Q2(t)Q1(t) Q2(t)
[2] · · · Q2(t)Qd(t)

...
...

. . .
...

Qd(t)Q1(t) Qd(t)Q2(t) · · · Qd(t)
[2]

 ,
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and we also consider E
[
λ(t)Q(t)⊤

]
and E

[
λ(t)λ(t)⊤

]
. Note that these are all d × d-

matrices and we define the stacked matrix Σ
(2)
t given by

Σ
(2)
t := E

[
λ(t)λ(t)⊤

]
⊕ E

[
λ(t)Q(t)⊤

]
⊕ E

[
Q(t)[2]

]
, (4.27)

where ⊕ indicates the direct sum, such that Σ
(2)
t is a 3d × 3d-matrix. We now de-

scribe the three steps required to compute each submatrix of the stacked matrix. For

each entry of a submatrix, we derive its associated ODE from Eqn. (4.21) which we

combine to obtain matrix-valued ODEs. We have that the matrices E
[
λ(t)λ(t)⊤

]
,

E
[
λ(t)Q(t)⊤

]
and E

[
Q(t)[2]

]
, satisfy the matrix-valued ODEs

d

dt
E
[
λ(t)λ(t)⊤

]
=
(
E[B]−Dα

)
E
[
λ(t)λ(t)⊤

]
+ E

[
λ(t)λ(t)⊤

](
E[B]−Dα

)⊤
+ E

[
B diag

(
E[λ(t)]

)
B⊤
]
+Dα

(
λ̄E[λ(t)]⊤

)
+
(
E[λ(t)]λ̄⊤

)
Dα,

d

dt
E
[
λ(t)Q(t)⊤

]
=
(
E[B]−Dα

)
E
[
λ(t)Q(t)⊤

]
− E

[
λ(t)Q(t)⊤

]
Dµ + E

[
λ(t)λ(t)⊤

]
(4.28)

+ (α⊙ λ̄)E[Q(t)]⊤ + E[B] diag
(
E[λ(t)]

)
,

d

dt
E
[
Q(t)[2]

]
= −DµE

[
Q(t)[2]

]
− E

[
Q(t)[2]

]
Dµ + E

[
λ(t)Q(t)⊤

]
+
(
E
[
λ(t)Q(t)⊤

])⊤
.

We end our account of the transient moments with a series of brief remarks. The

ODEs for Σ
(1)
t and Σ

(2)
t are related to those derived in Lemmas 1 and 3 in [22].

Concretely, the solution for the first moment E[λ(t)] agrees with Eqn. (8) in [22].

Furthermore, by taking the limit µ ↓ 0 in our expression for Q(t) we obtain

E
[
N (t)

]
= lim

µ↓0
E[Q(t)] =

(
E[B]−Dα

)−1(
et(E[B]−Dα) − I

)
λ

+
(
E[B]−Dα

)−2(
et(E[B]−Dα) − I

)
(α⊙ λ) (4.29)

+ t
(
E[B]−Dα

)−1
(α⊙ λ),

which agrees with the result in Eqn. (10) in [22]. Considering the second order mo-

ments, upon taking µ ↓ 0 in Eqn. (4.28), these agree with those in Lemma 3 in [22].

Note that the solution of E
[
N (t)[2]

]
is slightly different since we study the reduced

moment instead of E
[
N (t)N (t)⊤

]
. We finally remark that for orders n = 3, 4, . . ., it

becomes more cumbersome to obtain a clean and transparent way in which one can

encode the ODEs that describe the transient moments.

Stationary moments

We continue by considering the joint stationary moments of order at most 2 for Q

and λ of general dimension d ∈ N, see Eqn. (4.16). By exploiting the relation between
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Chapter 4 Markovian Multivariate Hawkes Population Processes

the joint stationary moments ψ(nQ,nλ) as described Eqn. (4.23), we derive the linear

systems of equations that the joint moments satisfy. In the sequel we use the notation

from Subsection 4.3.2.

For order n = 1, define the stacked vector

Σ(1) := lim
t→∞

Σ
(1)
t =

(
E[λ],E[Q]

)⊤
, (4.30)

which is the stationary version of Eqn. (4.24). We derive from Eqn. (4.23) that the

elements of this stacked vector satisfy

E[λ] = −
(
E[B]−Dα

)−1
L(0,1),

E[Q] = D−1µ E[λ].
(4.31)

For order n = 2, we define the stacked matrix

Σ(2) := lim
t→∞

Σ
(2)
t = E[λλ⊤]⊕ E[λQ⊤]⊕ E[Q[2]]. (4.32)

From the procedure followed for the transient moment stacked matrix Σ
(2)
t , in combi-

nation with Eqn. (4.23), we conclude that the stationary submatrices satisfy

0 =
(
E[B]−Dα

)
E[λλ⊤] + E[λλ⊤]

(
E[B]−Dα

)⊤
+ E

[
Bdiag

(
E[λ]

)
B⊤
]

+Dα

(
λ̄E[λ]⊤

)
+
(
E[λ]λ⊤

)
Dα,

0 =
(
E[B]−Dα

)
E[λQ⊤]− E[λQ⊤]Dµ + E[λλ⊤] + (α⊙ λ̄)E[Q]⊤ + E[B]diag

(
E[λ]

)⊤
,

0 = −DµE[Q[2]]− E[Q[2]]Dµ + E[λQ⊤] +
(
E[λQ⊤]

)⊤
.

(4.33)

The matrix-valued equations in (4.33) are all Sylvester equations, i.e., equations of the

form

AX +XB = C, (4.34)

for known matrices A, B, C, with the matrix X being unknown. It is a known result

that a unique solution for X exists if and only A and −B do not share any eigenvalue.

We conclude this subsection with two results on higher order stationary moments.

By applying Eqn. (4.23), we can obtain expressions for the moments

ψ(0,nλ) = E
[ d∏
i=1

λ
nλi
i

]
, ψ(nQ,0) = E

[ d∏
i=1

Q
[nQi

]

i

]
, (4.35)

124



4.4 Recursive Procedure

by straightforward substitution. Indeed, for fixed nλ ∈ N with nλ = nλ1 + · · · + nλd
,

we substitute nQj
≡ 0 for all j ∈ [d] in Eqn. (4.23) and rearrange terms to obtain

ψ(0,nλ) =
( d∑

j=1

nλj
(αj − E[Bjj])

)−1 d∑
j=1

{ d∑
i=1
i ̸=j

nλi
E
[
Bij

]
ψ(0,nλ − ei + ej) (4.36)

+ αjλjnλj
ψ(0,nλ − ej) +

nλ1∑
m1=0

· · ·
nλd∑

md=0

1{m⩽nλ−2}

d∏
k=1

(
nλk

mk

) d∏
i=1

E
[
B

nλi
−mi

ij

]
ψ(0,m+ ej)

}
,

under the assumption that E[Bnλi
ij ] < ∞ for all combinations i, j ∈ [d]. Observe that

in order to obtain a final closed-form expression for ψ(0,nλ), we need to solve a linear

system of equations of equal order moments, i.e., the ψ(0,nλ − ei + ej) terms.

A similar result holds for the joint moments of Q, given below. For fixed nQ ∈ N
with nQ = nQ1 + · · ·+nQd

, we substitute nλj
≡ 0 for all j ∈ [d] in Eqn. (4.23), yielding

ψ(nQ,0) =
( d∑

j=1

nQj
µj

)−1 d∑
j=1

nQj
ψ(nQ − ej, ej). (4.37)

We note that one can use the factorial moments ψ(nQ,0) to determine the non-

factorial moments of Q. More precisely, for a fixed i ∈ [d] and nQi
∈ N, we use the

well-known relationship

E
[
Q

nQi
i

]
=

nQi∑
k=1

∆k,nQi
E
[
Q

[k]
i

]
=

nQi∑
k=1

∆k,nQi
ψ(kei,0), (4.38)

where ∆k,nQi
are the Stirling numbers of the second kind, i.e., ∆k,nQi

denotes the

number of ways one can partition a set of nQi
elements into k non-empty subsets.

4.4 Recursive Procedure

In this section, we consider the bivariate setting d = 2 and focus on the structure

behind the joint moments of arbitrary order n ∈ N. While we focus on the bivariate

d = 2 setting here, this method can be extended to higher dimensions d ∈ N, at the
cost of heavier notation and more intricate objects. As such, this section serves as

a proof of principle on how to identify the recursive structure. This novel approach

leads to a transparent and exhaustive method to compute all possible joint moments

of the bivariate Hawkes process. Moreover, it provides the necessary insight into

the dependence structure between different moments, which can be exploited for fast

computation in Section 4.5 below.
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We construct, based on the results obtained in the previous sections, a recursive

procedure to compute the joint transient moments ψt(nλ,nQ) as well as the joint

stationary moments ψ(nλ,nQ). To make the analysis as transparent as possible, we

will express the main objects in vector/matrix-form. As it turns out, there is a strong

similarity between the structure of the algorithm to evaluate the transient moments

on one hand and its counterpart for the stationary moments on the other hand.

In the sequel we let n be the total order of the joint moments, i.e.,

n = nQ + nλ = nQ1 + nQ2 + nλ1 + nλ2 .

As a first step we rewrite the system of linear differential equations, as given by

Eqns. (4.21), and the system of linear equations, as given by (4.23), in vector-matrix

form. We then use these to set up a procedure to compute the transient and stationary

joint moments of any order. We first focus on deriving a procedure for the transient

moments ψt(nλ,nQ), as the stationary moments ψ(nλ,nQ) will follow from that.

4.4.1 Transient moments

We construct a recursive procedure to compute transient joint moments ψt(nλ,nQ)

by introducing properly defined vector- and matrix-valued objects, such that we can

exploit the ODE in Eqn. (4.21). Since d = 2, we aim to compute

ψt((nQ1 , nQ2), (nλ1 , nλ2)) = E
[
λ1(t)

nλ1λ2(t)
nλ2Q1(t)

[nQ1
]Q2(t)

[nQ2
]
]
.

The multivariate setting has the intrinsic complication that the number of combina-

tions of possible joint moments increases rapidly in n and d; already in this bivariate

setting, there are many possible combinations of joint moments of order n. To collect

all joint moments ψt((nQ1 , nQ2), (nλ1 , nλ2)) in a single vector, we need to specify an

ordering of the different moments. To that end, we introduce the stacked vector

Ψ
(n)
t :=

(
Ψ

(0,n)
t ,Ψ

(1,n−1)
t , . . . ,Ψ

(n,0)
t

)⊤
, (4.39)

where, for each k ∈ {0, 1, . . . , n}, the vector Ψ
(k,n−k)
t exhaustively contains all combi-

nations of joint moments such that nQ1 +nQ2 = k and nλ1 +nλ2 = n−k. We illustrate

this concept by detailing a few special cases. In the first place, for k = 0

Ψ
(0,n)
t =

(
ψt(0, (n, 0)), ψt(0, (n− 1, 1)), . . . , ψt(0, (0, n))

)⊤
=
(
E
[
λ1(t)

n
]
,E
[
λ1(t)

n−1λ2(t)
]
, . . . ,E

[
λ2(t)

n
])⊤

,
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4.4 Recursive Procedure

whereas for k = n

Ψ
(n,0)
t =

(
ψt((n, 0),0), ψt((n− 1, 1),0), . . . , ψt((0, n),0)

)⊤
=
(
E
[
Q1(t)

[n]
]
,E
[
Q1(t)

[n−1]Q2(t)
]
, . . . ,E

[
Q2(t)

[n]
])⊤

.

The cases corresponding with k ∈ {1, . . . , n − 1} are notationally considerably more

burdensome since one has to include all possible combinations of order k as well as

n− k.

For concrete examples of the stacked vector in (4.39) for orders n = 1, 2, 3, see

Appendix 4.C.1. It is readily verified that for general d the dimension of Ψ
(n)
t equals

D(d, n) :=
n∑

k=1

(
2d

k

)(
n− 1

k − 1

)
, (4.40)

where the 2d is due to the fact that we include moments of both Q(t) and λ(t). For

d = 2, we thus have that the size of Ψ
(n)
t is given by D(2, n).

The stacked vector Ψ
(n)
t satisfies a vector-valued ODE, which we describe now. By

Eqn. (4.21), it is immediate that we can write

d

dt
Ψ

(n)
t = MΨ

(n)
t +L

(
Ψ

(1)
t , . . . ,Ψ

(n−1)
t

)⊤
, (4.41)

for certain matrices M and L of appropriate dimension. Here, the matrix M is of

dimension D(2, n)×D(2, n), and L of dimension D(2, n)×D(2, n), where

D(2, n) =
n−1∑
m=1

D(2,m). (4.42)

As a next step, we identify blocks of M that correspond to subvectors Ψ
(k,n−k)
t of

the stacked vector Ψ
(n)
t . Upon inspecting (4.21) we observe that, when considering in

(4.41) the differential equations that correspond to dΨ
(k,n−k)
t /dt, in the right hand side

only Ψ
(k,n−k)
t and Ψ

(k−1,n−k+1)
t appear, besides a linear combination of the lower-order

objects Ψ
(1)
t , . . . ,Ψ

(n−1)
t . It means that we can write

d

dt
Ψ

(k,n−k)
t = M (k,n−k)Ψ

(k,n−k)
t +K(k,n−k)Ψ

(k−1,n−k+1)
t

+L(k,n−k)(Ψ(1)
t , . . . ,Ψ

(n−1)
t

)⊤
,

(4.43)

for matrices M (k,n−k), K(k,n−k), and L(k,n−k), where we set K(k,n−k) ≡ 0 when m = 0.

Eqn. (4.43) reveals a recursive procedure to compute Ψ
(n)
t , where in the n-th iteration
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a non-homogeneous linear system of ODEs has to be solved, with Ψ
(1)
t , . . . ,Ψ

(n−1)
t , as

derived in the previous steps, appearing in the non-homogeneous part.

We proceed by introducing the notation needed to set up the recursive procedure.

A tridiagonal matrix in Rn×n is a matrix with elements on the main diagonal, the first

diagonal above and below the main diagonal only, for which we use the notation, with

a, c ∈ Rn−1 and d ∈ Rn,

tridiag
(
a,d, c

)
:=


d1 c1 0 · · · 0

a1 d2 c2 · · · 0
...

. . . . . . . . .
...

0 0 an−2 dn−1 cn−1
0 0 0 an−1 dn

 .

Given the vectors nQ = (nQ1 , nQ2) and nλ = (nλ1 , nλ2), we set

v(nQ,nλ) := −nλ1α1 − nQ1µ1 − nλ2α2 − nQ2µ2,

w(nQ, n) :=
(
v(nQ, (n, 0)), v(nQ, (n− 1, 1)), . . . , v(nQ, (1, n− 1)), v(nQ, (0, n))

)⊤
,

where αi := αi − E[Bii] for i = 1, 2, corresponding to the LHS of Eqn. (4.21). With

the vectors

1(n) := (1, 2, . . . , n), 1(n) := (n, n− 1, . . . , 1),

and with ej the unit vector with 1 on the j−th component, we finally define the matrix,

for each k ∈ {0, 1, . . . , n− 1, n}

M (k,n−k) :=
k⊕

m=0

tridiag
(
1(n−k)E[B21],w

(
(n−m)e1 +me2, n− k

)
,1(n−k)E[B12]

)
,

(4.44)

where
⊕

denotes the direct sum notation for matrices. For concrete examples of the

matrix M (k,n−k) and how it appears in the ODE in (4.43), see Appendix 4.C. We can

now present our algorithm to compute the transient moments after which we provide

a method to solve the underlying ODEs.

Algorithm 4.1. Fix n ∈ N, and suppose we know the sequence of lower-order stacked

vectors Ψ
(1)
t , . . . ,Ψ

(n−1)
t . The vector-valued ODE in Eqn. (4.41) for the stacked vector

Ψ
(n)
t can be solved as follows.

Step 0: The vector Ψ
(0,n)
t satisfies the vector-valued ODE

d

dt
Ψ

(0,n)
t = M (0,n)Ψ

(0,n)
t +L(0,n)

(
Ψ

(1)
t , . . . ,Ψ

(n−1)
t

)
, (4.45)
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where the matrix L(0,n) follows from Eqn. (4.21), with initial condition Ψ
(0,n)
0

determined by Q(0) and λ(0).

Step m: For any k = 1, 2, . . . , n− 1, n, the vector Ψ
(k,n−k)
t satisfies the vector-valued

ODE

d

dt
Ψ

(k,n−k)
t = M (k,n−k)Ψ

(k,n−k)
t +K(k,n−k)Ψ

(k−1,n−k+1)
t (4.46)

+L(k,n−k)(Ψ(1)
t , . . . ,Ψ

(n−1)
t

)
,

where the matrices K(k,n−k) and L(k,n−k) are derived in a similar manner from

Eqn. (4.21), with initial condition Ψ
(k,n−k)
0 .

It is clear that Eqn. (4.21) uniquely defines the matrices K(k,n−k) and L(k,n−k)

needed in the above algorithm. However, their explicit definition would require objects

that are even more notationally involved. For moments of orders n = 1 and n = 2, we

can still explicitly write down the matrix for the stacked vector ODE, we can combine

the blocks of matrices into 4×4 and 10×10 matricesM respectively and also construct

the corresponding matrix L, see Appendix 4.C. However, for order n = 3, 4, . . ., we

would need very large matrices which are cumbersome to write down explicitly.

Due to the direct sum structure of M (k,n−k), it consists of blocks. This allows us

to decompose the k-th step in the algorithm into smaller steps, by considering the

parts of the vector Ψ
(k,n−k)
t associated with the individual blocks of the matrix. The

solution to the ODEs in Algorithm 4.1 can be given in terms of a matrix exponential.

Proposition 4.1. For fixed t ∈ R+, n ∈ N and k = 0, 1, . . . , n− 1, n, the solution for

the vector-valued ODE for Ψ
(k,n−k)
t in Eqn. (4.46) is given by

Ψ
(k,n−k)
t = etM

(k,n−k)

Ψ
(k,n−k)
0 (4.47)

+

∫ t

0

e(t−s)M
(k,n−k)

(
K(k,n−k)Ψ(k−1,n−k+1)

s +L(k,n−k)(Ψ(1)
s , . . . ,Ψ(n−1)

s

))
ds.

Proof. Computing d
dt
Ψ

(k,n−k)
t in Eqn. (4.47) immediately yields (4.46) by inspection

and Leibniz’ integral rule.

In case the objective is to obtain closed-form expressions, this becomes prohibitive

for orders n = 3, 4, . . .. In Appendix 4.C, we give explicit results by working out the

details for transient moments of order n = 1 and n = 2.
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4.4.2 Stationary moments

In this subsection, we focus on computing the joint stationary order n ∈ N moments:

with n = nQ + nλ the total order, we consider

ψ((nQ1 , nQ2), (nλ1 , nλ2)) = E
[
λ
nλ1
1 λ

nλ2
2 Q

[nQ1
]

1 Q
[nQ2

]

2

]
. (4.48)

By exploiting Eqn. (4.23), we develop a recursive procedure similar to the one for the

transient moments. The central object of study is

Ψ(n) := lim
t→∞

Ψ
(n)
t =

(
Ψ(0,n),Ψ(1,n−1), . . . ,Ψ(n,0)

)⊤
. (4.49)

For the following result, we use the notation from Section 4.4.1; recall in particular the

matrices defined in Eqn. (4.44). We have the following recursive procedure to compute

joint stationary order n moments, which is the stationary analog of Algorithm 4.1.

Algorithm 4.2. For any n ∈ N, the elements of the stacked vector Ψ(n) can be

computed using the following (n + 1)-step recursive procedure, given the lower-order

stacked vectors Ψ(1), . . . ,Ψ(n−1).

Step 0: The vector Ψ(0,n) satisfies the linear equation

0 = M (0,n) Ψ(0,n) +L(0,n)
(
Ψ(1), . . . ,Ψ(n−1))⊤, (4.50)

where the matrix L(0,n) follows from Eqn. (4.23).

Step k: For any k = 1, 2, . . . , n−1, n, the vector Ψ(k,n−k) satisfies the linear equations

0 =M (k,n−k) Ψ(k,n−k) +K(k,n−k)Ψ(k−1,n−k+1)

+L(k,n−k)(Ψ(1), . . . ,Ψ(n−1))⊤, (4.51)

where the matrices K(k,n−k) and L(k,n−k) are derived in a similar manner from

Eqn. (4.23).

The solution to the linear equations in Algorithm 4.2 is the following result.

Proposition 4.2. For n ∈ N and k = 0, 1, . . . , n − 1, n, the solution for the linear

equation for Ψ(k,n−k) in Eqn. (4.51) is given by

Ψ(k,n−k) = −
(
M (k,n−k)

)−1{
K(k,n−k)Ψ(k−1,n−k+1) +L(k,n−k)(Ψ(1), . . . ,Ψ(n−1))⊤},

Proof. Follows immediately from solving Eqn. (4.51).

Observe the strong similarity between the Algorithms 4.1 and 4.2, in the sense that

the underlying recursive structures fully match. Where for the transient moments

in the algorithm linear differential equations need to be solved, for their stationary

counterparts corresponding linear algebraic equations need to be solved.
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4.5 Nested Block Matrices: Bivariate Setting

In this section, we investigate the nested structure of the matrices associated with

the ODEs of the moments more thoroughly, again in the bivariate setting d = 2. The

motivation behind this is to identify a fast computational method for the transient and

stationary moments by exploiting the recursive procedure since the recursive method

requires nested integration or inversion of complicated matrices. It turns out that

one can find a nested sequence of well-behaved matrices that describe the relations

between the moments and enhance the computational effort significantly. We will see

this section is a bivariate version of Section 3.2 in [27], where they derive the structure

of ODEs associated with the transient moments using lower triangular matrices with

scalar entries. The difference is that in our case, they are replaced by block lower

triangular matrices, containing matrix entries. As was the case in Section 4.4, the

method can be extended to higher dimensions d ∈ N.
We first revisit the transient moments of λ(t) for a fixed t ∈ R+ so as to illustrate the

nested structure of the matrices. After that, we consider the joint transient moments of

(Q(t),λ(t)), which has a similar but more complex nested structure. To motivate our

analysis, consider the ODEs associated with the vectorsΨ
(0,1)
t andΨ

(0,2)
t containing the

first and second order moments of λ(t) (see Eqns. (4.85) and (4.87) in Appendix 4.C.1).

Observe that in stacked form, they can be represented in a block lower triangular

matrix structure, as follows:

d

dt

[
Ψ

(0,1)
t

Ψ
(0,2)
t

]
=

[
A2×2

1 02×3
2

D3×2
2 C3×3

2

][
Ψ

(0,1)
t

Ψ
(0,2)
t

]
+

[
b2×1

03×1

]
, (4.52)

with

A2×2
1 = M (0,1), C3×3

2 = M (0,2), D3×2
2 = L(0,2),

where the superscripts denote the dimensionality of the matrices. The matrices M (0,1)

and M (0,2) are defined in Eqn. (4.44) and L(0,2) is given in Eqn. (4.87). Further,

the notation 0k×l ∈ Rk×l represents the all-zeros matrix and b2×1 = (α1λ1, α2λ2)
⊤.

Observe that this stacked form contains the previously defined matrices as blocks.

A similar form occurs for higher orders n of the stacked vector (Ψ
(0,1)
t , . . . ,Ψ

(0,n)
t )⊤,

containing mixed moments of λ(t) up to order n.

Careful inspection of previous results reveals a nested sequence of block lower tri-

angular matrices. Let mn := n+ 1 and define mn := m1 + · · ·+mn. Then, consider a

nested sequence of block lower triangular matrices {Amn×mn
n }n∈N given by

Amn×mn
n =

[
A

mn−1×mn−1

n−1 0mn−1×mn
n

Dmn×mn−1
n Cmn×mn

n

]
, (4.53)
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where A2×2
1 ≡ C2×2

1 = M (0,1), Cmn×mn
n = M (0,n) and Dmn×mn−1

n = L(0,n). Clearly,

the first term on the RHS of (4.52) occurs as a special case of (4.53) when n = 2.

Recall that we know the structure of the matrices M (0,n) as given in Eqn. (4.44). In

Appendix 4.C.4, we give some further details to the structure of L(0,n) for the case

n = 3. Going back to the sequence of matrices {Amn×mn
n }n∈N as defined in (4.53), the

stacked vector (Ψ
(0,1)
t ,Ψ

(0,2)
t , . . . ,Ψ

(0,n)
t )⊤ satisfies the following ODE

d

dt

Ψ
(0,1)
t
...

Ψ
(0,n)
t

 = Amn×mn
n

Ψ
(0,1)
t
...

Ψ
(0,n)
t

+

[
b2×1

0(mn−m1)×1

]
, (4.54)

with initial condition (Ψ
(0,1)
0 , . . . ,Ψ

(0,n)
0 )⊤.

Proposition 4.3. If Cmi×mi
i is invertible for all i ∈ {1, . . . , n}, thenΨ

(0,1)
t
...

Ψ
(0,n)
t

 = eA
mn×mn
n t

Ψ
(0,1)
0
...

Ψ
(0,n)
0

−
(
Amn×mn

n

)−1 (
Imn×mn − eA

mn×mn
n t

)[ b2×1

0(mn−m1)×1

]
.

(4.55)

Proof. Taking the time derivative of Eqn. (4.55) immediately yields Eqn. (4.54).

Proposition 4.3 allows for the simultaneous computation of the first n transient

moments of λ(t) = (λ1(t), λ2(t))
⊤. However, we do need to compute the matrix

exponential and the inverse of Amn×mn
n .

This idea can be extended to consider the joint transient moments of (Q(t),λ(t))

in the bivariate setting d = 2. As we did before, we show the details of the first and

second order, and show how this extends to higher order moments. For the first order

moments, we consider the stacked vector Ψ
(1)
t stated here for completeness sake:

Ψ
(1)
t =

(
Ψ

(0,1)
t ,Ψ

(1,0)
t

)⊤
=
(
E[λ1(t)],E[λ2(t)],E[Q1(t)],E[Q2(t)]

)⊤
.

Close inspection of the associated ODEs (given in Eqns. (4.85) and (4.86) in Ap-

pendix 4.C.1) yields that

d

dt
Ψ

(1)
t = F 4×4

1 Ψ
(1)
t +

[
b2×1

02×1

]
, (4.56)

with

F 4×4
1 =

[
M (0,1) 02×2

I2×2 M (1,0)

]
, b2×11 =

[
α1λ1
α2λ2

]
.
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As before, the superscripts denote the dimensionality of the matrices, with Ik×l ∈ Rk×l

the identity matrix. Note the block lower triangular shape of F 4×4
1 .

In fact, if we include the second order moments contained in the vector by consider-

ing (Ψ
(1)
t ,Ψ

(2)
t )⊤, we can infer from the associated ODEs (given in Eqns.(4.87), (4.88)

and (4.89) in Appendix 4.C.1), in combination with Eqn. (4.56) that

d

dt

[
Ψ

(1)
t

Ψ
(2)
t

]
= F 14×14

2

[
Ψ

(1)
t

Ψ
(2)
t

]
+

[
b2×11

012×1

]
, (4.57)

with F 14×14
2 again a lower triangular matrix, given by

F 14×14
2 =

[
F 4×4

1 04×10

G10×4
2 H10×10

2 ,

]
,

with the matrices contained in it defined by

G10×4
2 =

L(0,2) 03×2

L
(1,1)
λ L

(1,1)
Q

03×2 03×2

 , H10×10
2 =

M (0,2) 03×4 03×3

K(1,1) M (1,1) 03×3

03×3 K(2,0) M (2,0)

 ,

L
(1,1)
λ =


E[B11] 0

E[B21] 0

0 E[B12]

0 E[B22]

 , L
(1,1)
Q =


α1λ1 0

α2λ2 0

0 α1λ1
0 α2λ2

 ,
where L(0,2) and the matrices K(1,1) and K(2,0) are known, see Appendix 4.C.1.

Continuing in this fashion we can consider vectors of arbitrary length n ∈ N,
namely (Ψ

(1)
t ,Ψ

(2)
t , . . . ,Ψ

(n)
t )⊤. Recall that we know the size of the vector pn ≡

D(2, n) = |Ψ(n)
t | from Eqn. (4.40), which yields the size of the stacked vector pn ≡

|(Ψ(1)
t ,Ψ

(2)
t , . . . ,Ψ

(n)
t )⊤|, by setting pn = p1 + · · · + pn. Consider the sequence of

matrices {F pn×pn
n }n∈N given by

F pn×pn
n =

[
F

pn−1×pn−1

n−1 0pn−1×pn

Gpn×pn−1
n Hpn×pn

n

]
,

with

Hpn×pn
n =


M (0,n) 0 · · · 0

K(1,n−1) M (1,n−1) · · · 0
...

. . . . . .
...

0 · · · K(n,0) M (n,0)

 .
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The matrices Gpn×pn−1
n are not as elegantly expressed for general n ∈ N, but can be

explicitly obtained through Eqn. 4.21. We have used these matrices for n = 1, 2 to

compute explicit moments in Appendix 4.C.2, and in Appendix 4.C.4 we give further

details to these matrices for order n = 3. Observe that Eqns. (4.56) and (4.57) are

special cases. The stacked vector (Ψ
(1)
t ,Ψ

(2)
t , . . . ,Ψ

(n)
t )⊤ satisfies the ODE

d

dt

Ψ
(1)
t
...

Ψ
(n)
t

 = F pn×pn
n

Ψ
(1)
t
...

Ψ
(n)
t

+

[
b2×1

0(pn−p1)×1

]
, (4.58)

with initial condition given by (Ψ
(1)
0 ,Ψ

(2)
0 , . . . ,Ψ

(n)
0 )⊤. The solution is given in the

following proposition.

Proposition 4.4. If Hpi×pi
i is invertible for all i ∈ {1, . . . , n}, thenΨ

(1)
t
...

Ψ
(n)
t

 = eF
pn×pn
n t

Ψ
(1)
0
...

Ψ
(n)
0

−
(
F pn×pn

n

)−1 (
Ipn×pn − eF

pn×pn
n t

)[ b2×1

0(pn−p1)×1

]
. (4.59)

Proof. Taking the time derivative of Eqn. (4.59) immediately yields Eqn. (4.58).

The advantage of Proposition 4.4 is that the computation of joint moments does not

require integration of matrix exponentials as in Proposition 4.1. By considering the

joint moments, the matrix in the associated ODE is more complex, but we reduced

the non-homogeneous part of the ODE in Eqn. (4.58) to a constant, which allows

for an analytic expression of the solution. In particular, the run time of computing

these transient moments does not increase in t, as opposed to the other computational

methods. We will see in the numerical computations done in Section 4.7 what the

advantage in terms of computation time is, compared to previously derived results.

4.6 The Nearly Unstable Behavior

In this section, we revisit the stability condition in Assumption 4.1 for the stationary

distributions of λ. More precisely, we analyze the behavior of λ when the spectral ra-

dius of H approaches 1, see Eqn. (4.4), i.e., when the system becomes nearly unstable.

The situation of near instability is commonly encountered in real (financial) data, and

deriving the corresponding limiting distributions provides an insightful analysis of the

probabilistic behavior in such cases. The nearly unstable situation is also referred to

as heavy traffic in OR and queueing theory.
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We consider the general d ∈ N dimensional setting and focus first on results for

λ = (λ1, . . . , λd)
⊤. For certain choices of symmetric parameters, we calculate the

Laplace transform of λ and identify its limit. To that end, we introduce the notation

T {λ}(s) for the Laplace transform of λ evaluated in s = (s1, . . . , sd)
⊤ ∈ Rd

+, given

explicitly by

T {λ}(s) = E
[
e−s

⊤λ
]
= E

[ d∏
i=1

e−siλi

]
. (4.60)

We assume a specific parameterization for sake of tractability, namely that for each

i ∈ [d], we have

αi = α ⩾ 0, B1i
d
= . . .

d
= Bdi

d
= Bi, λi = λ > 0, (4.61)

where Bi are independent non-negative random variables with E[B2
i ] <∞. This choice

of parameters induces symmetry, since it implies that each component λi has the same

base rate λ, the same decay rate α, and that it is self- or cross-excited by all B1, . . . , Bd.

Hence, this choice of parameters implies λi
d
= λj for any combination i, j ∈ [d]. The

following result yields an explicit solution for T {λ}(s).

Lemma 4.1. Assume Eqn. (4.61) and let βi(u) = E[e−uBi ] for any u ⩾ 0. Then, with

s = s1 + · · ·+ sd, we have

T {λ}(s) = exp
(
− αλ

∫ s

0

u

αu+
∑d

i=1 βi(u)− d
du
)
. (4.62)

Proof. From the PDE in Eqn. (4.19) and our assumptions on the parameters, we derive

that T {λ}(s) satisfies the PDE

d∑
i=1

(
αsi + βi(s)− 1

) d

dsi
T {λ}(s) = −αλ

d∑
i=1

siT {λ}(s),

upon substituting z1 = · · · = zd = 1. Further observe that for any i, j ∈ [d], we have

d

dsi
T {λ}(s) = E

[
− λie

−s⊤λ] = E
[
− λje

−s⊤λ] = d

dsj
T {λ}(s),

since λi
d
= λj, again by our assumptions on the parameters. Hence, we obtain the

ODE

d

ds1
T {λ}(s) = −αλs

αs+
∑d

i=1 βi(s)− d
T {λ}(s) =: −f(s1, . . . , sd))T {λ}(s), (4.63)
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where we note that the choice of index on the LHS is arbitrary. The solution to this

ODE is derived in a number of steps. First, we have that the solution may be expressed

as

log
(
T {λ}(s)

)
= −

∫ s1

0

f(u, s2, . . . , sd)du+K, K = log(T {λ}(0, s2, . . . , sd)).

(4.64)

Second, observe that since λi
d
= λj, the Laplace transforms of the marginals satisfy,

for any s ∈ R+,

T {λ}(s, 0, . . . , 0) = T {λ}(0, s, 0, . . . , 0) = · · · = T {λ}(0, 0, . . . , s).

We are then able to derive the joint Laplace transform of, say, (λ1, λ2)
⊤ from Eqn. (4.64),

since

T {λ}(s1, s2, . . . , 0)

= exp
(
−
∫ s1

0

f(u, s2, . . . , 0)du
)
T {λ}(0, s2, . . . , 0)

= exp
(
− αλ

∫ s1

0

u+ s2

α(u+ s2) +
∑d

i=1 βi(u+ s2)− d
du
)

× exp
(
− αλ

∫ s2

0

u

αu+
∑d

i=1 βi(u)− d
du
)

= exp
(
− αλ

( ∫ s1+s2

s2

v

αv +
∑d

i=1 βi(v)− d
dv +

∫ s2

0

u

αu+
∑d

i=1 βi(u)− d
du
))

= exp
(
− αλ

∫ s1+s2

0

v

αv +
∑d

i=1 βi(v)− d
dv
)
,

(4.65)

where we used a change of variable v = u + s2. Note that by symmetry, we can do

this for any pair (λi, λj)
⊤, with i, j ∈ [d]. Iterating the derivation in Eqn. (4.65), we

obtain the full solution

T {λ}(s) = exp
(
−
∫ s1

0

f(u, s2, . . . , sd)du
)
T {λ}(0, s2, . . . , sd)

= exp
(
− αλ

∫ s1+···+sd

0

u

αu+
∑d

i=1 βi(u)− d
du
)
.

We now use this result to derive the desired limit result in the nearly unstable

case. Observe that the stability condition of the matrix C, see Eqn. (4.4), having a
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maximum eigenvalue smaller than 1, is in our setting explicitly given by

θ :=
1

α

d∑
i=1

E[Bi] < 1. (4.66)

Further let σ = 2α
(∑d

i=1 E[B2
i ]
)−1

.

Theorem 4.3. Assuming Eqn. (4.61), the heavy-traffic Laplace transform of T {λ}(s)
is given by

lim
θ↑1

T {λ}(s(1− θ)) =
( σ

σ + s

)σλ
. (4.67)

Proof. The proof follows from the expression for T {λ}(s) in Eqn. (4.62), Taylor ex-

panding the βi(·), and computing the limit. Since the second moments of Bi exist, we

have βi(u) = 1 − uE[Bi] +
1
2
u2E[B2

i ] + o(u2) as u ↓ 0. Substituting s(1 − θ) as the

argument in Eqn. (4.62) and the Taylor expansion of βi(·), we obtain as θ ↑ 1, that

T {λ}(s(1− θ))

= exp
(
− αλ

∫ s

0

u(1− θ)

αu(1− θ) +
∑d

i=1 βi(u(1− θ))− d
(1− θ)du

)
= exp

(
− λ

∫ s

0

α(1− θ)

α−
∑d

i=1 E[Bi] +
u
2
(1− θ)

∑d
i=1 E[B2

i ] + o(1− θ)
du
)

= exp
(
− λ

∫ s

0

1

1 + u
2α

∑d
i=1 E[B2

i ] + o(1)
du
)
.

Finally, by definition of σ and an elementary computation, we have

lim
θ↑1

T {λ}(s(1− θ)) = lim
θ↑1

exp
(
− λ

∫ s

0

1

1 + uσ−1 + o(1)
du
)
=
( σ

σ + s

)σλ
.

One can recognize the familiar shape of the Laplace transform of a (multivariate)

Gamma distribution. Since there are multiple ways of defining a multivariate Gamma

distribution, we describe a straightforward way that takes into account the covariance

between components. More precisely, we have for any i, j ∈ [d] that

lim
θ↑1

Cov((1− θ)λi, (1− θ)λj) = λ/σ, (4.68)

by virtue of Eqn. (4.67). This yields the following result.
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Corollary 4.2. Assume Eqn. (4.61) holds. Then, for a random vector X, we have as

θ ↑ 1

(1− θ)λ
d→ X,

where each marginal Xi ∼ Γ(σλ, σ) and Cov(Xi, Xj) = λ/σ for any i, j ∈ [d].

Proof. Follows immediately from Theorem 4.3 combined with Lévy’s continuity theo-

rem. The covariance expression follows from Eqn. (4.68).

4.7 Numerical Experiments

The primary goal of the findings of the previous sections is to numerically evaluate

moments. In this section we compare the resulting output, in terms of efficiency and

accuracy, to alternatives such as finite difference schemes and Monte Carlo simulations.

All coding has been performed in Python. The underlying code can be obtained upon

request.

The first subsection focuses on computing moments of order n = 1 and n = 2 in

the d-dimensional setting of Section 4.3.2. In the trivariate setting d = 3 we compute

first and second order moments by evaluating the solutions of the ODEs derived in

Section 4.3.2, which are used as a benchmark to compare the alternative methods

to. In the second subsection, the bivariate setting d = 2 is considered, where we

apply the results of the nested block-matrix developed in Section 4.5, allowing us to

compute moments up to any order n ∈ N. By this method, relying on analytical

closed-form expression, we compute moments of order up to three, which are then

used as a benchmark.

Throughout this section, two alternative numerical evaluation techniques are used.

The first is based on finite differences (FD). We perform numerical differentiation of

the relevant transform, using the characterization in Theorem 4.1 and Corollary 4.1.

The moments of interest can be obtained by appropriately differentiating the joint

transform with respect to s and z and then setting s = 0 and z = 1. In this approach

these derivatives are approximated by the corresponding (central) finite differences.

The precision of these approximations depends on the ‘width parameter’ h > 0. The

second alternative technique is based on Monte Carlo simulation (MC). To simulate

the Hawkes process we use an algorithm based on Ogata’s thinning algorithm; see [63]

and [60, Algorithm 1.21] for details. The sampling mechanism is based on the cluster

representation of [55, Definition 2]. The performance of this method depends on the

number of runs m ∈ N.
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The performance of the various approaches is quantified in terms of run time and

error (relative to the benchmark, abbreviated by BM). Two types of errors are distin-

guished, namely the Mean Absolute Error (MAE) and Mean Relative Error (MRE):

MAE =
k∑

j=1

|m(BM)
j −m

(FD/MC)
j |, MRE =

k∑
j=1

|m(BM)
j −m

(FD/MC)
j |

m
(BM)
j

, (4.69)

where mj denotes our BM value of the j-th moment, k is the number of moments

computed, and the superscript indicates the underlying computational method.

4.7.1 Multivariate

In the trivariate d = 3 setting we numerically evaluate the first and second order

moments. While the methods of Section 4.3.2 work for any d ∈ N, we focus on

d = 3. We compute (joint) moments of Q(t) = (Q1(t), Q2(t), Q3(t)) and λ(t) =

(λ1(t), λ2(t), λ3(t)). We start by taking t = 5, later we study the impact of t.

We let the random marks be exponentially distributed: for any combination i, j ∈
{1, 2, 3}, we set Bij ∼ Exp(bij) for some bij > 0. For simplicity we assume indepen-

dence among the Bij. In the experiments we take

λ =

0.31
0.5

 , EB =

0.5 0.3 0.4

0.7 0.5 0.5

0.4 0.2 0.5

 , Dα =

2 0 0

0 1.5 0

0 0 2.5

 , Dµ =

1.5 0 0

0 0.5 0

0 0 1

 .
One readily verifies that for these parameters the stability condition of Assumption 4.1

is met.

Recall that the stacked vector Σ
(1)
t and the stacked matrix Σ

(2)
t contain all the

first order moments and combinations of second order moments, respectively; see

Eqns. (4.24) and (4.27). In this subsection, the benchmark BM corresponds to the

solution of the vector- and matrix-valued ODEs as given in Eqns. (4.25) and (4.28),

obtained using the SciPy package in Python. We used the default precision of the

SciPy ODE solver; the output presented in the next subsection indicates that this

provides sufficiently precise results.

Table 4.1, displaying the resulting run times and errors, quantifies the superior

performance of our approach. The table shows that the ODE method is faster than

the FD method, and orders of magnitude faster than the Monte Carlo simulation,

where the latter method in addition typically yields substantial errors. Run times are

reliably estimated by taking the average of sufficiently many experiments. We see that

in the FD method smaller values of h lead to lower run times: in this method, we vary

the arguments s and z with h when evaluating the joint transform, which is faster for
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smaller values of h. Further, observe that the MAE and MRE are not monotone in

h: for larger h the derivative is poorly approximated by the finite difference, while for

smaller h numerical stability issues have a detrimental effect. There is an optimal width

where the error is smallest, which in our instance happens to be around h = 10−3.

BM FD MC

n RT h RT MAE MRE m RT MAE MRE

1 7.17 ·10−3 10−2 5.26 ·10−2 1.27 ·10−3 3.42 ·10−4 102 9 8.92 ·10−1 4.98 ·10−1

· 10−3 3.94 ·10−2 1.81 ·10−4 9.84 ·10−5 103 96 2.41 ·10−1 1.43 ·10−1

· 10−4 3.35 ·10−2 6.60 ·10−4 3.69 ·10−4 104 956 6.87 ·10−2 3.68 ·10−2

2 9.65 · 10−2 10−2 3.29 ·10−1 9.96 ·10−2 1.17 ·10−2 102 13 2.48 ·101 4.56 ·100
· 10−3 2.62 ·10−1 2.03 ·10−3 4.18 ·10−4 103 115 3.89 ·100 7.69 ·10−1

· 10−4 2.20 ·10−1 1.13 ·10−2 1.18 ·10−3 104 1025 9.07 ·10−1 2.42 ·10−1

Table 4.1. Run times (RT) in seconds and errors (MAE, MRE) for first (n = 1) and second

(n = 2) order moments in the trivariate setting: performance of the benchmark ODE-based

method relative to FD and MC.

To assess whether the effects observed in the previous experiment hold in general,

we have performed experiments with a set of intrinsically different parameter settings.

In these experiments, we study run times and errors, while we fix the ‘width parameter’

h ≡ 10−3 and number of simulation runs m ≡ 103. Since varying each entry in each of

the vectors and matrices would lead to a large set of instances, we decided to focus on

altering only the parameters directly pertaining to λ1(·) and Q1(·), while respecting

Assumption 4.1. Note that the effect will propagate to other components due to cross-

excitation. Table 4.2 shows the resulting run times and errors. The main conclusion

is that the experiments reveal that, uniformly across all instances, the benchmark

ODE-based method remains the fastest, with a run time that is hardly affected by

the parameters chosen. We note that increasing the value of E[B11] or decreasing the

value of α1 results in the system approaching the boundary of the stability condition

in Assumption 4.1, thus leading to larger relative errors.

We also studied the effect of varying the time parameter t on the run times. Recall

that the FD method uses the (conditional) joint transform, where the latter requires

solving systems of ODEs. Figure 4.1 shows that the run times of the ODE-based

method and the FD method scale effectively linearly with t, with the ODE method

having the smallest slope. The run time for MC increases superlinearly; we took its

logarithm to be able to show it in the same plot. This superlinear behavior is an

inherent consequence of the branching structure underlying the Hawkes process. We

note that this qualitative behavior is observed for all choices of parameters that we

considered.
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BM FD MC

Parameter RT RT MAE MRE RT MAE MRE

λ1 = 3 1.13 ·10−1 3.04 ·10−1 2.48 ·10−2 7.44 ·10−4 286 7.19 ·100 3.34 ·10−1

λ1 = 5 1.20 ·10−1 3.10 ·10−1 7.68 ·10−2 1.02 ·10−3 432 1.47 ·101 3.98 ·10−1

λ1 = 10 1.36 ·10−1 3.32 ·10−1 5.37 ·10−1 2.09 · 10−3 812 1.18 ·102 6.19 ·10−1

EB11 = 1 1.04 ·10−1 3.05 ·10−1 1.02 ·10−2 1.14 ·10−3 118 5.48 ·100 7.55 ·10−1

EB11 = 1.3 1.06 ·10−1 3.07 ·10−1 1.52 ·10−2 1.07 ·10−3 131 1.12 ·101 9.38 ·10−1

EB11 = 1.6 1.02 ·10−1 3.08 ·10−1 1.19 · 10−1 2.62 ·10−3 152 8.72 ·101 2.38 ·100

α1 = 1 1.03 ·10−1 2.97 ·10−1 7.91 ·10−3 5.11 ·10−3 130 1.29 ·101 1.09 ·100
α1 = 3 1.11 ·10−1 3.27 ·10−1 2.89 ·10−3 1.92 ·10−3 93 5.85 ·100 2.04 ·100
α1 = 10 1.73 ·10−1 5.45 ·10−1 1.14 ·10−2 8.89 ·10−3 80 2.29 ·100 9.83 ·10−1

µ1 = 0.5 1.01 ·10−1 3.01 ·10−1 2.49 ·10−3 5.05 ·10−4 98 3.84 ·100 6.30 ·10−1

µ1 = 2 1.06 ·10−1 3.04 ·10−1 2.23 ·10−3 5.82 ·10−4 97 4.98 ·100 1.25 ·100
µ1 = 5 1.26 ·10−1 3.18 ·10−1 2.42 ·10−3 1.12 ·10−3 99 5.22 ·100 1.45 ·100

Table 4.2. Run times (RT) in seconds and errors (MAE, MRE) for combined first and

second order moments in the trivariate setting: effect of parameter changes of the benchmark

ODE-based method relative to FD and MC.

4.7.2 Bivariate

In this subsection, we compute for the bivariate setting (d = 2) the transient moments

of Q(t) = (Q1(t), Q2(t)) and λ(t) = (λ1(t), λ2(t)), of orders n = 1, 2, 3. Again we take

t = 5, but later assess the effect of the choice of t. As before the random marks are

exponentially distributed, i.e., for i, j ∈ {1, 2}, we set Bij ∼ Exp(bij) for some bij > 0,

with independence between the Bij. The parameters are

λ =

[
0.5

0.5

]
, EB =

[
1.5 0.5

0.75 1.25

]
, Dα =

[
3 0

0 2

]
, Dµ =

[
1 0

0 2

]
.

The stability condition of Eqn. (4.4) is met, which in the bivariate setting reads

(α1 − E[B11])(α2 − E[B22]) > E[B12]E[B21]. (4.70)

We compute all the first, second and third order moments, i.e., all entries of the

stacked vectors Ψ
(1)
t , Ψ

(2)
t , and Ψ

(3)
t . As our benchmark serves the main result of

Section 4.5, namely Proposition 4.4. This result exploits the block-matrix structure,

by which we can simultaneously compute moments of multiple orders, thus greatly

increasing the computational performance. As it turns out, the value difference with

the ODE-based approach of the previous subsection is negligible (i.e., in the order of

10−8). The difference in computational effort, however, is substantial: for this instance

the block-matrix method is about 200 times faster.

Table 4.3 shows that the BM method is much faster than FD and MC, especially for

second and third order moments. We also see that the absolute and relative errors of
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Figure 4.1. Run times of the BM, FD, and MC method for moments up to second order

in the trivariate setting.

FD and MC significantly grow as the order of moments increase. Particularly for the

third order moments, the poor stability of the FD method significantly degrades the

performance, as can be seen by the variability of the error when changing the precision

parameter h.

BM FD MC

n RT h RT MAE MRE m RT MAE MRE

1 4.77 ·10−4 10−2 4.42 ·10−2 2.55 ·10−3 1.12 ·10−3 102 5 7.16 ·10−1 3.32 ·10−1

· 10−3 3.31 ·10−2 8.55 ·10−5 4.61 ·10−5 103 62 3.19 ·10−1 1.49 ·10−1

· 10−4 2.97 ·10−2 4.38 ·10−4 2.64 ·10−4 104 589 1.69 ·10−2 7.30 ·10−3

2 5.61 · 10−4 10−2 8.12 ·10−2 2.70 ·10−1 2.45 ·10−2 102 6 2.98 ·101 2.76 ·100
· 10−3 6.42 ·10−2 2.03 ·10−3 4.18 ·10−4 103 67 8.01 ·100 9.71 ·10−1

· 10−4 5.73 ·10−2 1.14 ·10−2 1.38 ·10−3 104 631 5.36 ·100 6.92 ·10−1

3 9.26 ·10−4 10−2 2.49 ·10−1 2.23 ·102 1.77 ·100 102 7 9.57 ·102 1.09 ·101
· 10−3 2.07 ·10−1 2.99 ·102 5.61 ·101 103 69 2.21 ·102 2.87 ·100
· 10−4 1.72 ·10−1 1.34 ·106 3.34 ·104 104 639 3.98 ·101 4.47 ·10−1

Table 4.3. Run times (RT) in seconds and errors (MAE, MRE) for first (n = 1), second

(n = 2), and third (n = 3) order moments in the bivariate setting: comparison of the

benchmark block-matrix method relative to FD and MC.

Figure 4.2 shows the effect of varying the time parameter t. As before, the run time

of FD scales linearly with t, and that of MC superlinearly. This should be contrasted

with the fact that the block-matrix method has the attractive feature that its run time

does not depend on t.

We now consider the block-matrix stationary moments. The first and second order

stationary moments can be immediately obtained from the results of Section 4.3.2,

142



4.7 Numerical Experiments

Figure 4.2. Run times of the BM, FD, and MC method for moments up to third order in

the bivariate setting.

by solving the associated Sylvester matrix equations. We now study the obvious

alternatives when not knowing these stationary moments, based on picking a ‘large’

value of t in the FD and MC methods. These methods have two intrinsic drawbacks:

(1) run times increase in t, and (2) we do not know a priori what value of t guarantees

that the error made is sufficiently small. As we already saw that MC is typically

outperformed by FD, we focus on FD only. To select a sufficiently large value of t, we

compute the FD-based approximation of first and second order transient moments for

successive integer values of t, until the difference of the respective MREs is smaller than

some given threshold ϵ. We compare the resulting approximation to our benchmark,

i.e., the values obtained by solving the Sylvester matrix equations, so as to quantify

the error made.

Table 4.4 presents the results for the FD method with precision level ϵ = 0.01.

We have performed the above procedure for different choices of parameters, where the

parameter that is altered is given in the table. Note that the benchmark method is

exact and provides near-instant response. Observe that for specific sets of parameters

there is a substantial effect on the value of t (the time at which the procedure ter-

minates, that is), the run time, and the MRE, in particular when the parameters are

close to the boundary of the stability condition in Assumption 4.1, e.g., E[B11] = 2.25

or α1 = 2.1.

We proceed by studying the numerical evaluation of the objects featured in Sec-

tion 4.3.1. From the joint transform characterization in Theorem 4.2, we compute the

mixed moments, for any t ⩾ 0, τ > 0 and any combination i, j = 1, 2,

E[Qi(t)Qj(t+ τ)], E[λi(t)λj(t+ τ)], (4.71)
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FD

Parameter t RT MRE

λ1 = 3 18 3.25 ·100 2.17 ·10−2

λ1 = 10 18 3.38 ·100 1.94 ·10−2

EB11 = 0.5 14 2.75 ·100 1.51 ·10−2

EB11 = 2.25 43 1.08 ·101 6.87 ·10−2

α1 = 2.1 86 2.89 ·101 1.58 ·10−1

α1 = 5 15 3.77 ·100 1.55 ·10−2

µ1 = 0.5 19 3.97 ·100 2.11 ·10−2

µ1 = 5 18 3.38 ·100 2.84 ·10−2

Table 4.4. Run times (RT) in seconds until first and second order transient moments

approximate stationary moments in the bivariate setting: FD method with precision ϵ = 0.01.

as before using finite differences. It is noted that along the same lines objects of

the type E[Qi(t)λj(t + τ)] can be evaluated, and in addition various types of auto-

covariances and auto-correlations (cf. [22] for the auto-covariance in the market micro-

structure setting). The joint transform characterization allows for efficient and fast

computation of these cross-moments, also for large t > 0, which makes it practical in

these settings.

To assess the performance, we have conducted a numerical experiment with the

same parameters as earlier in this subsection. To analyze the effect of the τ parameter

in (4.71), in Figure 4.3 we fix t = 1.5 and plot the quantities of interest as functions of

τ . The solid lines are the moments computed by applying FD to the joint transform,

and the dotted lines represent the results from the MC method (based on 104 runs).

We see that MC performs increasingly poorly as τ increases, in particular for the

population processes Qi(·), which is due to the fact that there are more events (i.e.,

arrivals and departures) for larger τ , and hence more variation. Further, the different

shapes in the plots indicate that the effect of τ on the specific cross-moment depends

on the chosen parameters.

We now turn our attention to the effect of the initial values. In Theorem 4.1,

we characterized the joint transform with the processes being initialized at Q(t0) =

(Q1(t0), Q2(t0)) = (q1,0, q2,0) ∈ N2 and λ(t0) = (λ1(t0), λ2(t0)) = (λ1,0, λ2,0) ∈ R2
+ for

some t0 > 0. By applying FD, we can compute the moments of our interest for any

initial value, for instance

E[Qi(t) |Qi(t0) = qi,0], E[λi(t) |λi(t0) = λi,0], (4.72)

with i = 1, 2, where qi,0 ∈ N and λi,0 ∈ R+. In our experiment we focus on the

moments of Q1(·) and λ1(·), studying the effect of three different choices of qi,0 and
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Figure 4.3. Computation of cross-moments for t = 1.5 and τ ∈ [0, 10] using the joint

transform characterization (solid lines) compared to Monte Carlo simulated averages (dashed

lines)

λi,0 on the first moments and variances as a function of t. Note that a different

value of Qi(t0) = qi,0 will not influence λj(·), since the population processes do not

directly affect the intensity processes, but due to mutual excitation, the values λ1(t0) =

λ1,0 and λ2(t0) = λ2,0 do matter. When computing E[Q1(t)|Q1(t0) = q1,0], we leave

λi(t0) = λi(0) = λi for i = 1, 2, and we only change q1,0. Similarly, when computing

E[λ1(t)|λ1(t0) = λ1,0], we leave λ2(t0) = λ2(0) = λ2 and only change λ1,0.

Figure 4.4 shows the expectations and variances, where we introduced compact

notation E[Q1(t) | q1,0] = E[Q1(t) |Q1(t0) = q1,0] and E[λ1(t)|λ1,0] = E[λ1(t)|λ1(t0) =

λ1,0]; similarly for the variances. For the moments of Q1(t), we observe a vertical

translation of the plots, which is expected since the arrived individuals depart inde-

pendently and according to the same distribution. For the moments of λ1(t), we see

that the effect of the λ1,0-value is substantial. For both the mean and the variance

there is convergence to their respective steady-state values.

4.8 Concluding Remarks

This paper has studied multivariate Hawkes-fed Markovian infinite-server queues,

which can be alternatively interpreted as population processes. Our objective was to

devise accurate and efficient algorithms to compute transient and stationary moments.
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Figure 4.4. Computation of expected values and variances of Q1(t) and λ1(t), with different

initial values at t0 = 2, with t ∈ [t0, 10], using the joint transform characterization.

We succeeded in doing so, heavily relying on having access to the joint transform of the

Hawkes intensity process and the population process. When the multivariate Hawkes

process is of general dimension d, this transform is expressed in terms of systems of

ODEs, allowing for the computation of joint moments. This includes joint moments

where the components pertain to the same as well as to different points in time, thus

covering also the evaluation of the processes’ autocovariance functions. We then pro-

ceeded with finding expressions for the first and second order, transient and stationary

moments for the d-dimensional processes. Next, in the 2-dimensional setting we de-

rived a recursive procedure, revealing a block-matrix structure for the computation of

moments of any order. Our numerical experiments show that our approach outper-

forms its alternatives: it provides highly accurate, near instant response.

4.A Proofs

Proof of Theorem 4.1. The proof is comprised of a number of steps. First, we use the

Markov property on the distribution function of the joint process (Q(t),λ(t)), next we

take partial derivatives to obtain an expression for the density. Then, we consecutively

apply the Laplace and z-transform to obtain a PDE. Finally, we use the method of

characteristics to obtain a system of ODEs. We describe below the main steps; some

technical details are relegated to the Appendix.

146



4.A Proofs

We note that the probabilities considered in this proof are conditional on the value

of the processes at time t0, i.e. Q(t0) = Q0 and λ(t0) = λ0. To start off, for t ∈ R+,

k ∈ Nd
+ and ν ∈ Rd

+, set

F (t,ν,k) = P(λ(t) ⩽ ν,Q(t) = k),
∂F (t,ν,k)

∂ν
=


∂F (t,ν,k)

∂ν1
...

∂F (t,ν,k)
∂νd

 , (4.73)

Also define

f(t,ν,k) =
∂dF (t,ν,k)

∂ν1 · · · ∂νd
, (4.74)

as the joint density of (Q(t),λ(t)). For some δ > 0, consider the probability

F (t+ δ, ν −α⊙ (ν − λ)δ ,k), (4.75)

where the interpretation of the term ν − α ⊙ (ν − λ) is a decay factor, in the sense

that for small δ, no new arrival of a point in (t, t + δ] makes the intensity λ(·) decay
with rate α back to the mean reversion level λ.

To compute this probability, we apply the Markov property to Eqn. (4.75), which

leaves us to consider the possibilities to get in the state of exactly k active points and

intensity equal to ν−α⊙ (ν−λ). There are three distinct ways to get to this state at

time t+ δ from time t: we have exactly k active points with no arrivals or departures;

we have k−ej active points and exactly one arrival in component j; or we have k+ej

active points and one departure in component j. This yields up to o(δ) terms that

F (t+ δ, ν −α⊙ (ν − λ)δ, k)

=
d∑

j=1

∫ νd

0

· · ·
∫ ν1

0

δyjf(t,y,k − ej)P(Bj ⩽ ν − y)dy1 · · · dyd

+
d∑

j=1

(kj + 1)δµjF (t,ν,k+ ej)

+

∫ νd

0

· · ·
∫ ν1

0

(1−
d∑

j=1

δµjkj −
d∑

j=1

δyj)f(t,y,k)dy1 · · · dyd + o(δ).

Subtracting F (t,k,λ) on both sides, dividing by δ and taking δ ↓ 0 yields

∂F (t,ν,k)

∂t
−
(
α⊙ (ν − λ)

)⊤∂F (t,ν,k)
∂ν
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=
d∑

j=1

∫ νd

0

· · ·
∫ ν1

0

yjf(t,y,k − ej)P(Bj ⩽ ν − y)dy1 · · · dyd

+
d∑

j=1

(kj + 1)µjF (t,ν,k+ ej)

−
d∑

j=1

∫ νd

0

· · ·
∫ ν1

0

(µjkj + yj)f(t,y,k)dy1 · · · dyd,

where the LHS follows from the definition of the directional derivative. Next, we take

the partial derivatives with respect to ν1, . . . , νd, so as to rewrite above equation in

terms of the probability density function f(t,ν,k). By the definitions of F and f

given in Eqns. (4.73) and (4.74), and using Leibniz’ integral rule on the integral terms,

we obtain

∂f(t,ν,k)

∂t
−

d∑
j=1

αj
∂

∂νj
νjf(t,ν,k) +

d∑
j=1

αjλj
∂f(t,ν,k)

∂νj

=
d∑

j=1

∫ νd

0

· · ·
∫ ν1

0

yjf(t,y,k − ej)
∂d

∂ν1 · · · ∂νd
P(Bj ⩽ ν − y)dy1 · · · dyd (4.76)

+
d∑

j=1

(
f(t,ν,k+ ej)(kj + 1)µj − f(t,ν,k)(kjµj + νj)

)
.

Denote the d-dimensional Laplace transform with respect to ν by

ξ(t, s,k) := L(f(t,ν,k))(s) =
∫ ∞
0

· · ·
∫ ∞
0

e−s
⊤νf(t,ν,k)dν1 · · · dνd.

Taking the Laplace transform of Eqn. (4.76) yields

∂ξ(t, s,k)

∂t
+

d∑
j=1

αjsj
∂ξ(t, s,k)

∂sj
+

d∑
j=1

αjλjsjξ(t, s,k) (4.77)

=
d∑

j=1

(
− ∂ξ(t, s,k− ej)

∂sj
βj(s) + (kj + 1)µjξ(t, s,k+ ej)− kjµjξ(t, s,k) +

∂ξ(t, s,k)

∂sj

)
,

see Appendix 4.B.1 for the term-by-term derivation. The computations boil down to

applying integration by parts, convolution arguments and the properties of F and f .

148



4.A Proofs

Rewriting the expression to have all derivatives on one side yields

∂ξ(t, s,k)

∂t
+

d∑
j=1

(αjsj − 1)
∂ξ(t, s,k)

∂sj
+

d∑
j=1

∂ξ(t, s,k− ej)

∂sj
βj(s)

=
d∑

j=1

(
(kj + 1)µjξ(t, s,k+ ej)− kjµjξ(t, s,k)− αjλjsjξ(t, s,k)

)
.

(4.78)

Next, we rewrite equation (4.78) by taking the z-transform, which gives us the joint

transform introduced in Eqn. (4.6), i.e.,

ζt0(t, s, z) := Z
(
ξ(t, s,k)

)
(z) =

∞∑
k1=0

· · ·
∞∑

kd=0

zk11 · · · zkdd ξ(t, s,k) = Et0

[
e−s

⊤λ(t)
d∏

i=1

z
Qi(t)
i

]
,

yielding

∂ζt0(t, s, z)

∂t
+

d∑
j=1

(
αjsj + zjβj(s)− 1

)∂ζt0(t, s, z)
∂sj

+
d∑

j=1

(
µj(zj − 1)

)∂ζt0(t, s, z)
∂zj

= −ζt0(t, s, z)
d∑

j=1

αjλjsj,

(4.79)

where we added the subscript t0 to emphasize the dependence on this initial time

value. We refer to Appendix 4.B.1 for the term-by-term derivation.

By employing the method of characteristics, we can rewrite the PDE in Eqn. (4.79)

into a system of ODEs. To that end, consider a curve in R2d parameterized by

(ŝ(u), ẑ(u)) as a function of u, where t0 ⩽ u ⩽ t, which terminates at the set of

parameters (s, z), i.e. (ŝ(t), ẑ(t)) = (s, z). Since we have a first-order PDE, we easily

obtain the characteristic system of ODEs by

dŝj(u)

du
= αj ŝj(u) + ẑj(u)βj(ŝ(u))− 1,

dẑj(u)

du
= µj(ẑj(u)− 1),

(4.80)

for each j ∈ [d]. For ẑj(·), the solution can be directly computed as

ẑj(u) = 1 + Cje
uµj ,

where Cj is derived by the boundary condition ẑj(t) = zj, yielding Cj = (zj − 1)e−tµj ,

and thus ẑj(u) = 1 + (zj − 1)e−µj(t−u). Upon substituting the solution for ẑj(u) in the

equation of ŝj(u) in (4.80), we obtain the ODE

−dŝj(u)

du
+ αj ŝj(u) + (1 + (zj − 1)e−µj(t−u))βj(ŝ(u))− 1 = 0, (4.81)
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with terminal condition ŝj(t) = sj. For later purposes, we rephrase the ODE in

Eqn. (4.81) into an ODE subject to an initial condition. To that end, let v = t0+ t−u
such that t0 ⩽ v ⩽ t and the ODE for ŝj(·) becomes

dŝj(t0 + t− v)

dv
+ αj ŝj(t0 + t− v) + (1 + (zj − 1)e−µj(v−t0)βj(ŝ(t0 + t− v))− 1 = 0.

Upon defining s̃j(v) = ŝj(t0+ t−v), we have that s̃j(·) satisfies Eqn. (4.9), with initial

condition s̃j(t0) = ŝj(t) = sj.

We can now solve the characteristic equation of ζt0(·). Since the original PDE

in Eqn. (4.79) is inhomogeneous, we know the solution ζt0(t, s, z) is not constant

along characteristics, but evolves according to the RHS of (4.79). Therefore, if we

set ζ̂t0(u) := ζt0(u, ŝ(u), ẑ(u)) to be the solution restricted to the characteristics, then

ζ̂t0(·) satisfies

∂ζ̂t0(u)

∂u
= −ζ̂t0(u)

d∑
j=1

αjλj ŝj(u),

subject to initial condition

ζ̂t0(t0) = ζt0(t0, ẑ(t0), ŝ(t0)) =
d∏

j=1

ẑj(t0)
Qj,0 exp

(
− ŝj(t0)λj,0

)
.

Solving this yields

ζ̂t0(u) =
d∏

j=1

ẑj(t0)
Qj,0 exp

(
− ŝj(t0)λj,0 − αjλj

∫ u

t0

ŝj(v)dv
)
.

Finally, the solution of the PDE is given at the endpoint of the characteristic (t, s, z),

implying that ζt0(t, s, z) = ζ̂t0(t). Using the relation ŝj(t0) = s̃j(t), we obtain

ζt0(t, s, z) =
d∏

j=1

ẑj(t0)
Qj,0 exp

(
− ŝj(t0)λj,0 − αjλj

∫ t

0

ŝj(t0 + t− u)du
)

=
d∏

j=1

ẑj(t0)
Qj,0 exp

(
− s̃j(t)λj,0 − αjλj

∫ t

t0

s̃j(u)du
)
,

which finishes the proof.

Proof of Theorem 4.2. The proof follows by conditioning on Q(t) and λ(t), using the

tower property, and then applying Theorem 4.1 and techniques from the proof. To
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start, we have

E
[ d∏

i=1

y
Qi(t)
i e−riλi(t)z

Qi(t+τ)
i e−siλi(t+τ)

]
= E

[ d∏
i=1

y
Qi(t)
i e−riλi(t)E

[ d∏
i=1

z
Qi(t+τ)
i e−siλi(t+τ) |Q(t),λ(t)

]]
,

(4.82)

by the tower property. The inner expectation can be derived from Theorem 4.1 and

is given by

E
[ d∏

i=1

z
Qi(t+τ)
i e−siλi(t+τ) |Q(t),λ(t)

]
=

d∏
j=1

ẑj(t)
Qj(t)e−s̃j(t+τ)λj(t) exp

(
− λjαj

∫ t+τ

t

s̃j(u)du
)
,

where ẑj(·) and s̃j(·) satisfy Eqn. (4.15). Substituting this back in Eqn. (4.82) yields

E
[ d∏

i=1

y
Qi(t)
i e−riλi(t)

d∏
j=1

ẑj(t)
Qj(t)e−s̃j(t+τ)λj(t) exp

(
− λjαj

∫ t+τ

t

s̃j(u)du
)]

= E
[ d∏
j=1

(yj ẑj(t))
Qj(t)e−(rj+s̃j(t+τ))λj(t)

] d∏
j=1

exp
(
− λjαj

∫ t+τ

t

s̃j(u)du
)

= ζ(t,y ⊙ ẑ(t), r + s̃(t+ τ))
d∏

j=1

exp
(
− λjαj

∫ t+τ

t

s̃j(u)du
)
.

Applying Corollary 4.1 to the ζ(·) term on the RHS, specifically Eqn. (4.10), we obtain

ζ(t,y ⊙ ẑ(t), r + s̃(t+ τ)) =
d∏

j=1

exp
(
− λj r̃j(t)− λjαj

∫ t

0

r̃j(v)dv
)
,

where r̃j(·) satisfies, for each j ∈ [d], the ODE

dr̃j(v)

dv
+ αj r̃j(v) +

(
1 + (yj ẑj(t)− 1)e−µjv

)
β(r̃(v))− 1 = 0.

Since ẑj(t) = 1+(zj−1)e−µjτ , substituting this into the ODE for r̃j(·) and rearranging

terms finishes the proof.
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4.B Computations

4.B.1 Transform computations

In this section, we provide the details behind taking the Laplace and z-transform of

Eqns. (4.76) and (4.77) respectively. First we show the Laplace transform, denoted by

L(·), of (4.76), which we restate here for convenience

∂f(t,ν,k)

∂t
−

d∑
j=1

αj
∂

∂νj
νjf(t,ν,k) +

d∑
j=1

αjλj
∂f(t,ν,k)

∂νj

=
d∑

j=1

∫ νd

0

· · ·
∫ ν1

0

yjf(t,y,k − ej)
∂d

∂ν1 · · · ∂νd
P(Bj ⩽ ν − y)dy1 · · · dyd

+
d∑

j=1

(
f(t,ν,k+ ej)(kj + 1)µj − f(t,ν,k)(kjµj + νj)

)
,

and we introduce the shorthand notation

ξ(t, s,k) := L(f(t,ν,k))(s) =
∫ ∞
0

· · ·
∫ ∞
0

e−s
⊤νf(t,ν,k)dν1 · · · dνd ≡

∫ ∞

0

e−s
⊤νf(t,ν,k)dν.

We consider the term-by-term derivation in the equation that yields the transformed

version as given in Eqn. (4.77). For the first term, it is clear that

L
(∂f(t,ν,k)

∂t

)
(s) =

∂ξ(t,k, s)

∂t
.

For the second term, we need to show

−L
( d∑

j=1

αj
∂

∂νj
νjf(t,ν,k)

)
(s) =

d∑
j=1

αjsj
∂

∂sj
ξ(t,k, s).

The argument of the Laplace transform is

d∑
j=1

αj
∂

∂νj
νjf(t,ν,k) =

d∑
j=1

αjf(t,ν,k) +
d∑

j=1

αjνj
∂f(t,ν,k)

∂νj
.

We then use the linearity of the Laplace transform and apply integration by parts to

obtain

d∑
j=1

αjL
(
f(t,ν,k)

)
(s) +

d∑
j=1

αjL
(
νj
∂f(t,ν,k)

∂νj

)
(s)
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=
d∑

j=1

αj

∫ ∞

0

e−s
⊤νf(t,ν,k)dν +

d∑
j=1

αj

∫ ∞

0

e−s
⊤ννj

∂f(t,ν,k)

∂νj
dν

=
d∑

j=1

αj

∫ ∞

0

e−s
⊤νf(t,ν,k)dν +

d∑
j=1

αj

[
νje
−s⊤νf(t,ν,k)

]∞
0

−
d∑

j=1

αj

∫ ∞

0

(
1− νjsj

)
e−s

⊤νf(t,ν,k)dν

= 0 +
d∑

j=1

αjsj

∫ ∞

0

νje
−s⊤νf(t,ν,k)dν

=
d∑

j=1

αjsj

∫ ∞

0

− ∂

∂sj
e−s

⊤νf(t,ν,k)dν

= −
d∑

j=1

αjsj
∂

∂sj
ξ(t,k, s).

For the third term, we need to show

d∑
j=1

αjλjL
(∂f(t,ν,k)

∂νj

)
(s) =

d∑
j=1

αjλjsjξ(t,k, s).

Using integration by parts and that f(t,k,0) = 0, we have

L
(∂f(t,ν,k)

∂νj

)
(s) =

∫ ∞

0

e−s
⊤ν ∂f(t,ν,k)

∂νj
dν

=
[
e−s

⊤νf(t,ν,k)
]∞
0

+ sjsj

∫ ∞

0

e−s
⊤νf(t,ν,k)dν

= 0 + sjξ(t,k, s).

For the fourth term, let us denote the probability density function ofBj = (B1j, . . . , Bdj)
⊤

by hj ≡ hBj
. We need to show

d∑
j=1

L
(∫ νd

0

· · ·
∫ ν1

0

yjf(t,y,k − ej)
∂d

∂ν1 · · · ∂νd
P(Bj ⩽ ν − y)dy1 · · · dyd

)
=

d∑
j=1

L
(∫ ν

0

yjhj(ν − y)f(t,y,k − ej)dy
)

= −
d∑

j=1

βj(s)
∂ξ(t, s,k − ej)

∂sj
,
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with βj(s) = E[e−s⊤Bj ]. To show that this holds, we need the property that relates

convolutions with integration, which states that∫
Rd

(f ∗ g)(x)dx =
(∫

Rd

f(x)dx
)(∫

Rd

g(x)dx
)
,

for given integrable functions f and g. Using this, we have

−
d∑

j=1

βj(s)
∂ξ(t, s,k − ej)

∂sj

= −
d∑

j=1

βj(s)

∫ ∞

0

∂

∂sj
e−s

⊤νf(t,ν,k − ej)dν

=
d∑

j=1

∫ ∞

0

e−s
⊤νhj(ν)dν

∫ ∞

0

νje
−s⊤νf(t,ν,k − ej)dν

=
d∑

j=1

∫ ∞

0

∫ ∞

0

e−s
⊤(ν−y)hj(ν − y)yje

−s⊤yf(t,y,k − ej)dydν

(⋆)
=

d∑
j=1

∫ ∞

0

e−s
⊤ν

∫ ν

0

hj(ν − y)yjf(t,y,k − ej)dydν

=
d∑

j=1

L
(∫ νd

0

· · ·
∫ ν1

0

yjf(t,y,k − ej)
∂d

∂ν1 · · · ∂νd
P(Bj ⩽ ν − y)dy1 · · · dyd

)
,

where (⋆) holds because the non negativity P(Bj ⩾ 0) = 1 implies hj(ν − y) = 0 if

ν ⩽ y.

The fifth term follows immediately by linearity since

d∑
j=1

L
(
f(t,ν,k+ ej)(kj + 1)µj

)
(s) =

d∑
j=1

(kj + 1)µjξ(t, s,k + ej).

Finally, the sixth term follows from the elementary computation

−
d∑

j=1

L
(
f(t,ν,k)(kjµj + νj)

)
(s) = −

d∑
j=1

kjµjL
(
f(t,ν,k)(s)−

d∑
j=1

kjνjL
(
f(t,ν,k)

)
(s)

= −
d∑

j=1

kjµjξ(t, s,k) +
d∑

j=1

∫ ∞

0

∂

∂sj
e−s

⊤νf(t,ν,k)dν

= −
d∑

j=1

kjµjξ(t, s,k) +
d∑

j=1

∂ξ(t, s,k)

∂sj
.
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We now show the Zeta transform, denoted by Z(·) of Eqn. (4.78), restated here for

convenience

∂ξ(t, s,k)

∂t
+

d∑
j=1

(αjsj − 1)
∂ξ(t, s,k)

∂sj
+

d∑
j=1

∂ξ(t, s,k− ej)

∂sj
βj(s)

=
d∑

j=1

(
(kj + 1)µjξ(t, s,k+ ej)− kjµjξ(t, s,k)− αjλjsjξ(t, s,k)

)
.

We introduce the shorthand notation

ζ(t, s, z) = Z
(
ξ(t, s,k)

)
(z) =

∞∑
k1=0

· · ·
∞∑

kd=0

zk11 · · · zkdd ξ(t, s,k) ≡
∑
k∈Nd

0

zkξ(t, s,k),

with Nd
0 = {0, 1, 2, . . . }d. As before, we take the term-by-term zeta transformation

and show that we obtain Eqn. (4.79). The first and second terms are immediate by

construction and linearity, since we have

Z
(∂ξ(t, s,k)

∂t

)
(z) =

∂ζ(t, s, z)

∂t
,

d∑
j=1

Z
(
αjsj

∂ξ(t, s,k)

∂sj

)
(z) =

d∑
j=1

(αjsj − 1)
∂ζ(t, s, z)

∂sj
.

For the third term, we need to show

d∑
j=1

Z
(∂ξ(t, s,k− ej)

∂sj
βj(s)

)
(z) =

d∑
j=1

zjβj(s)
∂ζ(t, s, z)

∂sj
.

With the notation Nd
j = {n ∈ Nd : nj ⩾ 1} for j ∈ [d], we write out the left hand side

to obtain

d∑
j=1

Z
(∂ξ(t, s,k− ej)

∂sj
βj(s)

)
(z) =

d∑
j=1

∑
k∈Nd

j

zkβj(s)
∂ξ(t, s,k− ej)

∂sj

=
d∑

j=1

βj(s)zj
∑
k∈Nd

0

zk∂ξ(t, s,k)

∂sj

=
d∑

j=1

βj(s)zj
∂ζ(t, s,k)

∂sj
.

For the fourth and fifth term, we need to show

d∑
j=1

Z
(
µj(kj + 1)ξ(t,k + ej, s)− µjkjξ(t,k, s)

)
(z) = −

d∑
j=1

µj(zj − 1)
∂ζ(t, s, z)

∂zj
.
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Using elementary computations, we have

d∑
j=1

Z
(
µj(kj + 1)ξ(t,k + ej, s)− µjkjξ(t,k, s)

)
(z)

=
d∑

j=1

µj

∑
k∈Nd

0

(kj + 1)zkξ(t,k + ej, s)− kjz
kξ(t,k, s)

=
d∑

j=1

µj

∑
k∈Nd

j

kjz
k−ejξ(t,k, s)− kjzjz

k−ejξ(t,k, s)

=
d∑

j=1

µj(1− zj)
∂

∂zj

∑
k∈Nd

0

zkξ(t,k, s)

= −
d∑

j=1

µj(zj − 1)
∂ζ(t, s, z)

∂zj
.

Finally, the sixth term follows immediately from the definition since

d∑
j=1

αjλjsjZ
(
ξ(t, s,k)

)
(z) = ζ(t, s, z)

d∑
j=1

αjλjsj.

4.B.2 Joint moments: computations

In this section, we provide the details behind the derivation of the PDE to ODE as

given in Eqns. (4.83) and (4.21). Since we are taking partial derivatives with respect

to multiple variables, it is not immediate to see where all terms come from. Some

terms are straightforward to compute, so we focus on the ones that require careful

attention. We first show the result and then provide details about the complicated

terms.

Differentiating Eqn. (4.19) nλ1 , . . . , nλd
times with respect to s1, . . . , sd, respectively,
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and then substituting s1 = s2 = · · · = sd = 0, yields

d

dt
E
[ d∏

i=1

λi(t)
nλiz

Qi(t)
i

]
+

d∑
j=1

nλj
αjE

[ d∏
i=1

λi(t)
nλiz

Qi(t)
i

]
−

d∑
l=1

nλl

d∑
j=1

E
[
Blj

]
E
[
zjλj(t)

d∏
i=1

λi(t)
nλi
−1{i=l}z

Qi(t)
i

]
+

d∑
j=1

µj(zj − 1)E
[
Qj(t)

d∏
i=1

λi(t)
nλiz

Qi(t)−1{i=j}
i

]
=

d∑
j=1

(zj − 1)E
[
λj(t)

d∏
i=1

λi(t)
nλiz

Qi(t)
i

]
+

d∑
j=1

αjλjnλj
E
[ d∏

i=1

λi(t)
nλi
−1{i=j}z

Qi(t)
i

]

+
d∑

j=1

nλ1∑
m1=0

· · ·
nλd∑

md=0

1{m⩽nλ−2}

d∏
k=1

(
nλk

mk

)
E
[
zj

d∏
i=1

B
nλi
−mi

ij λi(t)
mi+1{i=j}z

Qi(t)
i

]
,

(4.83)

where m = m1 + · · · +md and we collected the E[Bij] combinations of first order on

the LHS and higher orders on the RHS. Next, we take Eqn. (4.83) and differentiate

nQ1 , . . . , nQd
times with respect to z1, . . . , zd, respectively, and then substitute z1 =

· · · = zd = 1. After elementary calculus we obtain

d

dt
ψt(nQ,nλ) +

d∑
j=1

(
nλj

(αj − E
[
Bjj

]
) + nQj

µj

)
ψt(nQ,nλ)

=
d∑

j=1

d∑
i=1
i ̸=j

nλi
E
[
Bij

]
ψt(nQ,nλ − ei + ej) +

d∑
j=1

nQj
ψt(nQ − ej,nλ + ej) (4.84)

+
d∑

j=1

αjλjnλj
ψt(nQ,nλ − ej) +

d∑
i=1

d∑
j=1

nλi
nQj

E
[
Bij

]
ψt(nQ − ej,nλ − ei + ej)

+
d∑

j=1

nλ1∑
m1=0

· · ·
nλd∑

md=0

1{m⩽nλ−2}

d∏
k=1

(
nλk

mk

){
nQj

d∏
i=1

E
[
B

nλi
−mi

ij

]
ψt(nQ − ej,m+ ej)

+
d∏

i=1

E
[
B

nλi
−mi

ij

]
ψt(nQ,m+ ej)

}
.

To obtain the ODE in Eqn. (4.83), the starting point is Eqn. (4.19) and we differ-

entiate nλ1 , . . . , nλd
times with respect to s1, . . . , sd respectively, and then substitute

s1 = · · · = sd = 0. The terms that are not immediate to compute are those where we
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need to apply the product rule repeatedly. Consider the computation of

∂nλ1 · · · ∂nλd

∂s
nλ1
1 · · · ∂snλd

d

d∑
j=1

αjsjE
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
.

We first focus on differentiation with respect to the first component, yielding

∂nλ1

∂s
nλ1
1

d∑
j=1

αjsjE
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
=

∂nλ1
−1

∂s
nλ1
−1

1

α1E
[
λ1(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
− ∂nλ1

−1

∂s
nλ1
−1

1

d∑
j=1

αjsjE
[
λ1(t)λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
= −2

∂nλ1
−2

∂s
nλ1
−2

1

α1E
[
λ1(t)

2e−s
⊤λ(t)

d∏
n=1

zQn(t)
n

]
+

∂nλ1
−2

∂s
nλ1
−2

1

d∑
j=1

αjsjE
[
λ1(t)

2λj(t)e
−s⊤λ(t)

d∏
n=1

zQn(t)
n

]
...

= nλ1(−1)nλ1
−1α1E

[
λ1(t)

nλ1e−s
⊤λ(t)

d∏
n=1

zQn(t)
n

]
+

d∑
j=1

αjsjE
[
λ1(t)

nλ1λj(t)e
−s⊤λ(t)

d∏
n=1

zQn(t)
n

]
.

Note that all the terms in the latter sum vanish when we substitute s1 = · · · = sd = 0.

An analogous expression holds for the other components. If we now combine the

differentiation with respect to all components and substitute s1 = · · · = sd = 0, we

have

∂nλ1 · · · ∂nλd

∂s
nλ1
1 · · · ∂snλd

d

d∑
j=1

αjsjE
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
=

d∑
j=1

nλj
αjE

[ d∏
i=1

λi(t)
nλiz

Qi(t)
i

]
.

Another, more complicated, term we need to compute is

∂nλ1 · · · ∂nλd

∂s
nλ1
1 · · · ∂snλd

d

d∑
j=1

zjβj(s)E
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
,

with βj(s) = E
[
e−s

⊤Bj
]
. It is clear that taking higher order derivatives means that

we have to successively apply the product rule. Moreover, since we are taking partial

derivatives with respect to multiple components, we will get many cross terms. Let us

focus on the first component, which yields

∂nλ1

∂s
nλ1
1

d∑
j=1

zjβj(s)E
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
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= (−1)1
d∑

j=1

zj
∂nλ1

−1

∂s
nλ1
−1

1

E
[
B1je

−s⊤Bj
]
E
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
+ (−1)1

d∑
j=1

zj
∂nλ1

−1

∂s
nλ1
−1

1

E
[
e−s

⊤Bj
]
E
[
λ1(t)λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
= (−1)2

d∑
j=1

zj
∂nλ1

−2

∂s
nλ1
−2

1

E
[
B2

1je
−s⊤Bj

]
E
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
+ 2(−1)2

d∑
j=1

zj
∂nλ1

−2

∂s
nλ1
−2

1

E
[
B1je

−s⊤Bj
]
E
[
λ1(t)λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
+ (−1)2

d∑
j=1

zj
∂nλ1

−2

∂s
nλ1
−2

1

E
[
e−s

⊤Bj
]
E
[
λ1(t)

2λj(t)e
−s⊤λ(t)

d∏
n=1

zQn(t)
n

]
=

...

= nλ1(−1)nλ1

d∑
j=1

zjE
[
B1je

−s⊤Bj
]
E
[
λ1(t)

nλ1
−1λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
+ (−1)nλ1

d∑
j=1

zj1{nλ1
⩾2}

nλ1
−2∑

m1=0

(
nλ1

m1

)
E
[
B

nλ1
−m1

1j

]
E
[
λ1(t)

mλj(t)e
−s⊤λ(t)

d∏
n=1

zQn(t)
n

]
+ (−1)nλ1

d∑
j=1

zjE
[
λ1(t)

nλ1λj(t)e
−s⊤λ(t)

d∏
n=1

zQn(t)
n

]
,

since the number of terms is doubled in every step of the derivation. The computation

for the other components is entirely analogous. Upon taking the joint derivative and

substituting s1 = s2 = · · · = sd = 0, we obtain

∂nλ1 · · · ∂nλd

∂s
nλ1
1 · · · ∂snλd

d

d∑
j=1

zjβj(s)E
[
λj(t)e

−s⊤λ(t)
d∏

n=1

zQn(t)
n

]
=

d∑
l=1

nλl

d∑
j=1

E
[
Blj

]
E
[
zjλj(t)

d∏
i=1

λi(t)
nλi
−1{i=l}z

Qi(t)
i

]
+

d∑
j=1

zjE
[
λj(t)

d∏
i=1

λi(t)
nλiz

Qi(t)
i

]

+
d∑

j=1

nλ1∑
m1=0

· · ·
nλd∑

md=0

1{m⩽nλ−2}

d∏
k=1

(
nλk

mk

)
E
[
zj

d∏
i=1

B
nλi
−mi

ij λi(t)
mi+1{i=j}z

Qi(t)
i

]
,

where m = m1 + · · ·md.

We now focus on the terms to obtain the ODE in Eqn. (4.21). The starting point

is Eqn. (4.83), which we differentiate nQ1 , . . . , nQd
times with respect to z1, . . . , zd

159



Chapter 4 Markovian Multivariate Hawkes Population Processes

respectively and substitute z1 = · · · = zd = 1. There are multiple terms in (4.83) that

require the product rule when differentiating.

We consider one such term and take the appropriate derivative, i.e.,

∂nQ1 · · · ∂nQd

∂z
nQ1
1 · · · ∂znQd

d

d∑
j=1

µj(zj − 1)E
[
Qj(t)

d∏
i=1

λi(t)
nλiz

Qi(t)−1{i=j}
i

]
.

Again, we focus on differentiation with respect to the first component, which yields

∂nQ1

∂z
nQ1
1

d∑
j=1

µj(zj − 1)E
[
Qj(t)

d∏
i=1

λi(t)
nλiz

Qi(t)−1{i=j}
i

]
=

∂nQ1
−1

∂z
nQ1
−1

1

µ1E
[
Q1(t)

d∏
i=1

λi(t)
nλiz

Qi(t)−1{i=1}
i

]
+

∂nQ1
−1

∂z
nQ1
−1

1

µ1(z1 − 1)E
[
Q1(t)(Q1(t)− 1)

d∏
i=1

λi(t)
nλiz

Qi(t)−21{i=1}
i

]
+

d∑
j=2

∂nQ1
−1

∂z
nQ1
−1

1

µj(zj − 1)E
[
Qj(t)Q1(t)

d∏
i=1

λi(t)
nλiz

Qi(t)−1{i=j}−1{i=1}
i

]
= 2

∂nQ1
−2

∂z
nQ1
−2

1

µ1E
[
Q1(t)(Q1(t)− 1)

d∏
i=1

λi(t)
nλiz

Qi(t)−21{i=1}
i

]
+

∂nQ1
−2

∂z
nQ1
−2

1

µ1(z1 − 1)E
[
Q1(t)(Q1(t)− 1)(Q1(t)− 2)

d∏
i=1

λi(t)
nλiz

Qi(t)−31{i=1}
i

]
d∑

j=2

∂nQ1
−2

∂z
nQ1
−2

1

µj(zj − 1)E
[
Qj(t)Q1(t)(Q1(t)− 1)

d∏
i=1

λi(t)
nλiz

Qi(t)−1{i=j}−21{i=1}
i

]
=

...

= nQ1µ1E
[
Q1(t)

[nQ1
]

d∏
i=1

λi(t)
nλiz

Qi(t)−nQ1
1{i=1}

i

]
,

where we substituted z1 = · · · = zd = 1 in the last step, canceling out all the terms

that contain the factor (zj − 1). We can compute the derivatives with respect to other

components in a similar manner, which results in

∂nQ1 · · · ∂nQd

∂z
nQ1
1 · · · ∂znQd

d

d∑
j=1

µj(zj − 1)E
[
Qj(t)

d∏
i=1

λi(t)
nλiz

Qi(t)−1{i=j}
i

]
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=
d∑

j=1

nQj
E
[ d∏

i=1

λ
nλi
i Qi(t)

[nQi
]
]
=

d∑
j=1

nQj
ψt(nQ,nλ).

Note that all other terms in Eqn. (4.83) follow the same structure of differentiation.

4.C Explicit Examples

In this section, we provide more explicit details for the moments in the bivariate

setting d = 2. We provide examples by writing out the recursive procedure outlined in

Section 4.4. The main objective is to derive near-explicit results for both the transient

moments ψt((nQ1 , nQ2), (nλ1 , nλ2)) and stationary moments ψ((nQ1 , nQ2), (nλ1 , nλ2)),

where the focus is on moments of order 1 and 2. In both cases, we apply the recursive

procedures described in Section 4.4.

4.C.1 Recursive procedure

We illustrate the stacked vector Ψ
(n)
t for orders n = 1 and n = 2, and derive the ODEs

associated with the recursive procedure.

Example 4.1 (first order, bivariate). For n = 1, we have D(2, 1) = 4, and

Ψ
(1)
t =

(
Ψ

(0,1)
t ,Ψ

(1,0)
t

)⊤
,

where

Ψ
(0,1)
t =

(
E
[
λ1(t)

]
,E
[
λ2(t)

])⊤
, Ψ

(1,0)
t =

(
E
[
Q1(t)

]
,E
[
Q2(t)

])⊤
.

By Step 0 of Algorithm 4.1, we obtain the ODE

d

dt
Ψ

(0,1)
t =

[
−α1 E[B12]

E[B21] −α2

]
Ψ

(0,1)
t +

[
α1λ1
α2λ2

]
, (4.85)

whose solution gives us an expression for Ψ
(0,1)
t = (E[λ1(t)],E[λ2(t)])⊤. We need this

Ψ
(0,1)
t in Step 1, which states

d

dt
Ψ

(1,0)
t =

[
−µ1 0

0 −µ2

]
Ψ

(1,0)
t +

[
1 0

0 1

]
Ψ

(0,1)
t , (4.86)

whose solution yields an expression for Ψ
(1,0)
t = (E[Q1(t)],E[Q2(t)])

⊤.
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Example 4.2 (second order, bivariate). For n = 2, we have D(2, 2) = 10, and

Ψ
(2)
t =

(
Ψ

(0,2)
t ,Ψ

(1,1)
t ,Ψ

(2,0)
t

)⊤
,

where

Ψ
(0,2)
t =

(
E
[
λ1(t)

2
]
,E
[
λ1(t)λ2(t)

]
,E
[
λ2(t)

2
])⊤

,

Ψ
(1,1)
t =

(
E
[
Q1(t)λ1(t)

]
,E
[
Q1(t)λ2(t)

]
,E
[
Q2(t)λ1(t)

]
,E
[
Q2(t)λ2(t)

])⊤
,

Ψ
(2,0)
t =

(
E
[
Q1(t)

[2]
]
,E
[
Q1(t)Q2(t)

]
,E
[
Q2(t)

[2]
])⊤

.

For order n = 2, our objective is to compute Ψ
(0,2)
t ,Ψ

(1,1)
t , and Ψ

(2,0)
t . Step 0 of

Algorithm 4.1 yields

d

dt
Ψ

(0,2)
t =

−2α1 2E[B12] 0

E[B21] −α1 − α2 E[B12]

0 2E[B21] −2α2

Ψ
(0,2)
t

+

 2α1λ1+E[B2
11] E[B2

12]

E[B11]E[B21] + α2λ2 E[B22]E[B12] + α1λ1
E[B2

21] 2α2λ2+E[B2
22]

Ψ
(0,1)
t ,

(4.87)

which depends on the lower-order vector Ψ
(0,1)
t (which was found in Example 1). For

Step 1, note that Ψ
(1,1)
t is a 4-dimensional vector, which satisfies

d

dt
Ψ

(1,1)
t =

[
−α1 − µ1 E[B12]

E[B21] −α2 − µ1

]
⊕

[
−α1 − µ2 E[B12]

E[B21] −α2 − µ2

]
Ψ

(1,1)
t (4.88)

+


1 0 0

0 1 0

0 1 0

0 0 1

Ψ
(0,2)
t +


α1λ1 0 E[B11] 0

α2λ2 0 E[B21] 0

0 α1λ1 0 E[B12]

0 α2λ2 0 E[B22]

Ψ
(1)
t ,

where we see the dependence on the lower-order stacked vector Ψ
(1)
t (which was found

in Example 1). Regarding the final step, i.e., Step 2,

d

dt
Ψ

(2,0)
t =

−2µ1 0 0

0 −µ1 − µ2 0

0 0 −2µ2

Ψ
(2,0)
t +

2 0 0 0

0 1 1 0

0 0 0 2

Ψ
(1,1)
t . (4.89)

Example 4.3 (third order, bivariate). For n = 3, we have D(2, 3) = 20, and

Ψ
(3)
t =

(
Ψ

(0,3)
t ,Ψ

(1,2)
t ,Ψ

(2,1)
t ,Ψ

(3,0)
t

)⊤
,
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where

Ψ
(0,3)
t =

(
E
[
λ1(t)

3
]
,E
[
λ1(t)

2λ2(t)
]
,E
[
λ1(t)λ2(t)

2
]
,E
[
λ2(t)

3
])⊤

,

Ψ
(1,2)
t =

(
E
[
Q1(t)λ1(t)

2
]
,E
[
Q1(t)λ1λ2(t)

]
,E
[
Q1(t)λ2(t)

2
]
,

E
[
Q2(t)λ1(t)

2
]
,E
[
Q2(t)λ1(t)λ2

]
,E
[
Q2(t)λ2(t)

2
])⊤

,

Ψ
(2,1)
t =

(
E
[
Q1(t)

[2]λ1(t)
]
,E
[
Q1(t)

[2]λ2(t)
]
,E
[
Q1(t)Q2(t)λ1(t)

]
,E
[
Q1(t)Q2(t)λ2(t)

]
,

E
[
Q2(t)

[2]λ1(t)
]
,E
[
Q2(t)

[2]λ2(t)
])⊤

,

Ψ
(3,0)
t =

(
E
[
Q1(t)

[3]
]
,E
[
Q1(t)

[2]Q2(t)
]
,E
[
Q1(t)Q2(t)

[2]
]
,E
[
Q2(t)

[3]
])⊤

.

We could explicitly write down the ODEs of these vectors using Algorithm 4.1, but

the exposition would be rather tedious with large matrices.

4.C.2 Transient moments

The goal of this subsection is to find near-explicit expressions for Ψ
(1)
t and Ψ

(2)
t by

further solving the associated ODEs. It is clear that we can obtain the solution in terms

of a matrix exponential, which can be made more explicit in terms of its eigenvalues,

namely

etM
(k,n−k)

=
k∑

ℓ=1

etη
(k)
ℓ

k∏
m=1
m ̸=ℓ

M (k,n−k) − η
(k)
m I

η
(k)
ℓ − η

(k)
m

, (4.90)

with k denoting the dimension ofΨ
(k,n−k)
t and η

(k)
1 , . . . , η

(k)

k
the eigenvalues ofM (k,n−k),

and I the identity matrix.

We first consider the transient moments of order n = 1, working out the entries of

the stacked vector Ψ
(1)
t , in particular solving the ODE of Ψ

(0,1)
t as given in Eqn. (4.85).

By Proposition 4.1, the solution requires us to find the eigenvalues of the matrix

M (0,1) =

[
−α1 E[B12]

E[B21] −α2

]
,

so as to compute the matrix exponential etM
(0,1)

. With η ≡ η1, η2 denoting the two

eigenvalues, we straightforwardly obtain

η =
1

2

(
− α1 − α2 ±

√
α2
1 − 2α1α2 + α2

2 + 4E[B12]E[B21]
)
≡ 1

2

(
− α1 − α2 ±

√
D1

)
,

(4.91)

where αi = αi−E[Bii] for i = 1, 2. We let η1 and η2 denote the plus- and minus-variant

of η respectively. Note that D1 ⩾ 0 since it involves a square and Bij are non-negative
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random variables. Using Eqn. (4.90) and doing some elementary computations, the

matrix exponential can be expressed as

etM
(0,1)

=
1

η1 − η2

(
etη1
(
M (0,1) − η2I

)
− etη2

(
M (0,1) − η1I

))
=

1√
D1

({
etη1 − etη2

}[1
2
(α2 − α1) E[B12]

E[B21]
1
2
(α1 − α2)

]
+
{
etη1 + etη2

}[1
2

√
D1 0

0 1
2

√
D1

])
=

1

2

{
etη1 + etη2

}
I +

1√
D1

{
etη1 − etη2

}[1
2
(α2 − α1) E[B12]

E[B21]
1
2
(α1 − α2)

]
;

we use curly brackets to distinguish scalar terms from the vectors and matrices.

Next, we consider Ψ
(1,0)
t for which we need to find the eigenvalues of the matrix

M (1,0) = diag(−µ1,−µ2); cf. the ODE in Eqn. (4.86). Since this is a diagonal matrix,

these are simply −µ1 and −µ2, such that the matrix exponential is just

etM
(1,0)

=

[
e−tµ1 0

0 e−tµ2

]
.

Before we get to the solution, we define a number of functions needed for the solution

of Ψ
(1,0)
t , namely

u1(t) :=

[
(µ1 + η1)

−1(etη1 − e−tµ1) + (µ1 + η2)
−1(etη2 − e−tµ1)

(µ2 + η1)
−1(etη1 − e−tµ2) + (µ2 + η2)

−1(etη2 − e−tµ2)

]
,

u2(t) :=

[
(µ1 + η1)

−1(etη1 − e−tµ1)− (µ1 + η2)
−1(etη2 − e−tµ1)

(µ2 + η1)
−1(etη1 − e−tµ2)− (µ2 + η2)

−1(etη2 − e−tµ2)

]
,

u3(t) :=

[
(η1(µ1 + η1))

−1(etη1 − e−tµ1) + (η2(µ1 + η2))
−1(etη2 − e−tµ1)

(η1(µ2 + η1))
−1(etη1 − e−tµ2) + (η2(µ2 + η2))

−1(etη2 − e−tµ2)

]
,

u4(t) :=

[
(η1(µ1 + η1))

−1(etη1 − e−tµ1)− (η2(µ1 + η2))
−1(etη2 − e−tµ1)

(η1(µ2 + η1))
−1(etη1 − e−tµ2)− (η2(µ2 + η2))

−1(etη2 − e−tµ2)

]
.

We can now give the first moments explicitly through the application of Proposition

4.1. Given the initial conditions Ψ
(0,1)
0 = (λ1, λ2)

⊤ and Ψ
(1,0)
0 = (0, 0)⊤, the solutions
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to the ODEs in (4.85) and (4.86) are given by

Ψ
(0,1)
t = etM

(0,1)

[
λ1
λ2

]
+

∫ t

0

e(t−s)M
(0,1)

[
α1λ1
α2λ2

]
ds

=
1

α1α2 − E[B12]E[B21]

[
α1λ1α2 + α2λ2E[B12]

α2λ2α1 + α1λ1E[B21]

]

+
1

2

{
etη1 + etη2

}[λ1
λ2

]
+

1√
D1

{
etη1 − etη2

}[1
2
λ1(α2 − α1) + λ2E[B12]

1
2
λ2(α1 − α2) + λ1E[B21]

]

+
1

2

{
η−11 etη1 + η−12 etη2

}[α1λ1
α2λ2

]

+
1√
D1

{
η−11 etη1 − η−12 etη2

}[1
2
α1λ1(α2 − α1) + α2λ2E[B12]

1
2
α2λ2(α1 − α2) + α1λ1E[B21]

]
,

(4.92)

and

Ψ
(1,0)
t =

∫ t

0

e(t−s)M
(1,0)

Ψ(0,1)
s ds

=
1

α1α2 − E[B12]E[B21]

[
µ−11 (1− e−tµ1)

µ−21 (1− e−tµ2)

]
⊙

[
α1λ1α2 + α2λ2E[B12]

α2λ2α1 + α1λ1E[B21]

]

+
1

2
u1(t)⊙

[
λ1
λ2

]
+

1√
D1

u2(t)⊙

[
1
2
λ1(α2 − α1) + λ2E[B12]

1
2
λ2(α1 − α2) + λ1E[B21]

]

+
1

2
u3(t)⊙

[
α1λ1
α2λ2

]
+

1√
D1

u4(t)⊙

[
1
2
α1λ1(α2 − α1) + α2λ2E[B12]

1
2
α2λ2(α1 − α2) + α1λ1E[B21]

]
.

(4.93)

Observe that in order for the solution in (4.92) to remain stable and to obtain

finite moments, we need that both eigenvalues are strictly smaller than 0. By some

elementary algebra, it is seen that we should have that

α1α2 > E[B12]E[B21]. (4.94)

Note that this is the explicit version of the stability condition ρ(H) < 1 for the

bivariate setting; see Assumption 4.1. Also note that if one is interested in the

Hawkes process N (t) = (N1(t), N2(t))
⊤ rather than the population process Q(t) =

(Q1(t), Q2(t))
⊤, one needs to take µ1 = µ2 ≡ 0. The corresponding moments E[N (t)] =

(E[N1(t)],E[N2(t)])
⊤ can be derived from Eqn. (4.93) by taking the limit (µ1, µ2) ↓

(0, 0) and the use of L’Hopital’s rule.
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We now turn to order 2 and compute elements of the stacked vector Ψ
(2)
t . As

before, we start by considering Ψ
(0,2)
t , the vector containing the (mixed) moments

corresponding to λ(t). By Proposition 4.1, and recalling that Ψ
(0,2)
t satisfies the ODE

in Eqn. (4.87), we need to find the eigenvalues of

M (0,2) =

−2α1 2E[B12] 0

E[B21] −α1 − α2 E[B12]

0 2E[B21] −2α2

 .
Let κ ≡ κ1, κ2, κ3 denote the eigenvalues of M (0,2). We compute∣∣∣∣∣∣∣

−2α1 − κ 2E[B12] 0

E[B21] −α1 − α2 − κ E[B12]

0 2E[B21] −2α2 − κ

∣∣∣∣∣∣∣ = 0

⇐⇒ (−2α1 − κ)

∣∣∣∣∣−α1 − α2 − κ E[B12]

2E[B21] −2α2 − κ

∣∣∣∣∣− 2E[B12]

∣∣∣∣∣E[B21] E[B12]

0 −2α2 − κ

∣∣∣∣∣ = 0

⇐⇒ (−2α1 − κ)
(
κ2 + 3α2κ+ 2α2

2 + 2α1α2 + α1κ− 2E[B12]E[B21]
)

+ 2E[B12](E[B21]κ+ 2α2E[B21] = 0

⇐⇒ κ3 + κ23(α1 + α2) + κ
(
2(α1 + α2)

2 − 4E[B12]E[B21]
)
− 4(α1 + α2)E[B12]E[B21] = 0

⇐⇒ κ3 + κ2b+ κc+ d = 0,

with b, c, d defined as the constants of the square, linear and constant term respectively.

To apply the formula for the solutions to this cubic equation, we compute p and q,

given by

p =
1

3
(3c− b2)

= 2(α1 + α2)
2 − 4E[B12]E[B21]− 3((α1 + α2)

2

= −(α1 + α2)
2 − 4E[B12]E[B21],

and

q =
1

27

{
2b3 − 9bc+ 27d

}
=

1

27

{
2
(
3(α1 + α2)

)3 − 27(α1 + α2)
(
2(α1 + α2)

2 − 4E[B12]E[B21]
)

− 4 · 27(α1 + α2)E[B12]E[B21]
}

= 2(α1 + α2)
3 − 2(α1 + α2)

3 + 4(α1 + α2)E[B12]E[B21]− 4(α1 + α2)E[B12]E[B21]

= 0.
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It is well-known that the cubic equation has three real roots if 4p3 + 27q2 < 0. Since

q = 0, the condition becomes 4p3 < 0, which holds since p < 0 because of the square

term and E[Bij] ⩾ 0. Hence, the eigenvalues κm, with m = 1, 2, 3, are given by the

trigonometric solution

κk = − b
3
+ 2

√
−p
3

cos(θm) = −(α1 + α2) + 2
√

(α1 + α2)2 + 4E[B12]E[B21] cos(θm),

θm =
1

3
arccos

(3q
2p

√
3

−p
)
− 2π

3
(m− 1) =

π

6
− 2π

3
(m− 1).

This yields the eigenvalues

κ1 = −(α1 + α2)

κ2 = −(α1 + α2) +
√
3
√

(α1 + α2)2 + 4E[B12]E[B21] = −(α1 + α2) +
√
D2

κ3 = −(α1 + α2)−
√
3
√

(α1 + α2)2 + 4E[B12]E[B21] = −(α1 + α2)−
√
D2,

with D2 = 3((α1 + α2)
2 + 4E[B12]E[B21]). We apply these eigenvalues in the compu-

tation of the matrix exponential, as described in Eqn. (4.90), to obtain

etM
(0,2)

= eκ1t
1

κ1 − κ2

1

κ1 − κ3
(M (0,2) − κ2I)(M

(0,2) − κ3I)

+ eκ2t
1

κ2 − κ1

1

κ2 − κ3
(M (0,2) − κ1I)(M

(0,2) − κ3I)

+ eκ3t
1

κ3 − κ1

1

κ3 − κ2
(M (0,2) − κ1I)(M

(0,2) − κ2I)

=
eκ1t

D2

 cκ1 −2E[B12](α2 − α1) −2E[B12]
2

−E[B21](α2 − α1) 3(α1 + α2)
2 + 8E[B12]E[B21] −E[B12](α1 − α2)

−2E[B21]
2 −2E[B21](α1 − α2) cκ1


+
eκ2t

2D2

 c− −2E[B12](α1 − α2 −
√
D2) 2E[B12]

2

−E[B21](α1 − α2 −
√
D2) 4E[B12]E[B21] E[B12](α1 − α2 +

√
D2)

2E[B21]
2 2E[B21](α1 − α2 +

√
D2) c+


+
eκ3t

2D2

 c+ −2E[B12](α1 − α2 +
√
D2) 2E[B12]

2

−E[B21](α1 − α2 −
√
D2) 4E[B12]E[B21] E[B12](α1 − α2 −

√
D2)

2E[B21]
2 2E[B21](α1 − α2 −

√
D2) c−

 ,
where

cκ1 = 2α2
1 + 8α1α2 + 2α2

2 + 10E[B12]E[B21],

c− = 2E[B12]E[B21] + (α1 − α2)(α1 − α2 −
√
D2),
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c+ = 2E[B12]E[B21] + (α1 − α2)(α1 − α2 +
√
D2).

We now derive the matrix exponential corresponding to Ψ
(1,1)
t , appearing in the

ODE given in Eqn. (4.88). Observe that (4.88) reveals that to compute Ψ
(1,1)
t , we

need to know the non-homogeneous part of the equation, i.e. Ψ
(0,2)
t , as well as the

lower order (n = 1) stacked vector Ψ
(1)
t . Further notice that the 4×4 matrix M (1,1) is

the direct sum of two 2×2 matrices, which implies that we can split the 4-dimensional

ODE into two 2-dimensional ODEs. We introduce the relevant objects by setting

Ψ
(1,1)
t =

(
Ψ

(1,1)
t,Q1

,Ψ
(1,1)
t,Q2

)⊤
,

where

Ψ
(1,1)
t,Q1

=
(
E
[
Q1(t)λ1(t)

]
,E
[
Q1(t)λ2(t)

])⊤
,

Ψ
(1,1)
t,Q2

=
(
E
[
Q2(t)λ1(t)

]
,E
[
Q2(t)λ2(t)

])⊤
.

Focus on the solution of Ψ
(1,1)
t,Q1

, where we note that the solution for Ψ
(1,1)
t,Q2

can be

obtained in an analogous manner. Observe that one can derive from Eqn. (4.88) that

Ψ
(1,1)
t,Q1

satisfies the ODE

d

dt
Ψ

(1,1)
t,Q1

=

[
−α1 − µ1 E[B12]

E[B21] −α2 − µ1

]
Ψ

(1,1)
t,Q1

+

[
1 0 0

0 1 0

]
Ψ

(0,2)
t +

[
α1λ1 0 E[B11] 0

α2λ2 0 E[B21] 0

]
Ψ

(1)
t .

This means that we need the matrix exponential of

M
(1,1)
Q1

=

[
−α1 − µ1 E[B12]

E[B21] −α2 − µ1

]
,

which requires us to find the corresponding two eigenvalues, denoted by γ
(Q1)
1 and

γ
(Q1)
2 . These eigenvalues are similarly derived as in Eqn. (4.91), in this case given by

γ
(Q1)
1 = −µ1 + η1, γ

(Q1)
2 = −µ1 + η2,

with η1 =
1
2

(
− α1 − α2 +

√
D1

)
and η2 =

1
2

(
− α1 − α2 −

√
D1

)
. Substituting this in

the Lagrange interpolation formula of Eqn. (4.90), we obtain

etM
(1,1)
Q1 =

1

γ
(Q1)
1 − γ

(Q1)
2

{
etγ

(Q1)
1
(
M

(1,1)
Q1

− γ
(Q1)
2 I2

)
− etγ

(Q1)
2
(
M

(1,1)
Q1

− γ
(Q1)
1 I2

)}
=

1

2

{
etγ

(Q1)
1 + etγ

(Q1)
2
}
I +

1√
D1

{
etγ

(Q1)
1 − etγ

(Q1)
2
}[1

2
(α2 − α1) E[B12]

E[B21]
1
2
(α1 − α2)

]
.
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In a very similar manner, the matrix exponential needed to evaluate Ψ
(1,1)
t,Q2

can be

obtained from the ODE in Eqn. (4.88), and it is given by

etM
(1,1)
Q2 =

1

γ
(Q2)
1 − γ

(Q2)
2

{
etγ

(Q2)
1
(
M

(1,1)
Q2

− γ
(Q2)
2 I2

)
− etγ

(Q2)
2
(
M

(1,1)
Q2

− γ
(Q2)
1 I2

)}
=

1

2

{
etγ

(Q2)
1 + etγ

(Q2)
2
}
I +

1√
D1

{
etγ

(Q2)
1 − etγ

(Q2)
2
}[1

2
(α2 − α1) E[B12]

E[B21]
1
2
(α1 − α2)

]
,

with γ
(Q2)
1 = −µ2 + η1 and γ

(Q2)
2 = −µ2 + η2.

Finally, for the solution of Ψ
(2,0)
t , the vector containing the mixed factorial moments

of Q(t), we derive the matrix exponential of M (2,0) = diag(−2µ1,−µ1 − µ2,−2µ2),

which is simply

etM
(2,0)

=

e−2tµ1 0 0

0 e−t(µ1+µ2) 0

0 0 e−2tµ2

 .

Applying Proposition 4.1 to Ψ
(0,2)
t , Ψ

(1,1)
t and Ψ

(2,0)
t , we obtain the following result.

Given the initial conditions Ψ
(0,2)
0 = (λ

2

1, λ1λ2, λ
2

2)
⊤, Ψ

(1,1)
0,Q1

= (0, 0)⊤, Ψ
(1,1)
0,Q2

= (0, 0)⊤

and Ψ
(2,0)
0 = (0, 0, 0)⊤, the solutions to the ODEs in Eqns. (4.87), (4.88) and (4.89),

are given by, respectively,

Ψ
(0,2)
t = etM

(0,2)

Ψ
(0,2)
0

+

∫ t

0

e(t−s)M
(0,2)

 2α1λ1+E[B2
11] E[B2

12]

E[B11]E[B21] + α2λ2 E[B22]E[B12] + α1λ1
E[B2

21] 2α2λ2+E[B2
22]

Ψ(0,1)
s ds,

(4.95)

and Ψ
(1,1)
t = (Ψ

(1,1)
t,Q1

,Ψ
(1,1)
t,Q2

)⊤, with

Ψ
(1,1)
t,Q1

=

∫ t

0

e(t−s)M
(1,1)
Q1

{[1 0 0

0 1 0

]
Ψ(0,2)

s +

[
α1λ1 0 E[B11] 0

α2λ2 0 E[B21] 0

]
Ψ(1)

s

}
ds

Ψ
(1,1)
t,Q2

=

∫ t

0

e(t−s)M
(1,1)
Q2

{[0 1 0

0 0 1

]
Ψ(0,2)

s +

[
0 α1λ1 0 E[B12]

0 α2λ2 0 E[B22]

]
Ψ(1)

s

}
ds

(4.96)
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and

Ψ
(2,0)
t =

∫ t

0

e(t−s)M
(2,0)

2 0 0 0

0 1 1 0

0 0 0 2

Ψ(1,1)
s ds

=

∫ t

0

 2e−2(t−s)µ1E[Q1(s)λ1(s)]

e−(t−s)(µ1+µ2)
(
E[Q1(s)λ2(s)] + E[Q2(s)λ1(s)]

)
2e−2(t−s)µ2E[Q2(s)λ2(s)]

 ds.

(4.97)

We remark that explicit evaluation of the expressions for the second-order moments

is tedious, but in principle possible. For instance, it is evident that substituting the

matrix exponential of M (0,2) and the lower-order solution Ψ
(0,1)
s will yield rather in-

volved expressions. Evidently, for higher order moments, these expressions become

even more complex. However, the near-explicit solution in terms of matrix exponen-

tials and lower order terms is useful for practical purposes. Due to the availability of

fast and robust algorithms for the matrix exponential and the solution of ODEs, it is

relatively straightforward to numerically compute higher-order moments.

4.C.3 Stationary moments

This subsection deals with the application of Algorithm 4.2 to evaluate the stationary

moments Ψ(1) and Ψ(2).

We start by computing the stationary moments of order 1. By Step 1 of Algorithm

4.2, Ψ(0,1) satisfies the linear equation

0 =

[
−α1 E[B12]

E[B21] −α2

]
Ψ(0,1) +

[
α1λ1
α2λ2

]
,

yielding

Ψ(0,1) =
1

α1α2 − E[B12]E[B21]

[
α1λ1α2 + α2λ2E[B12]

α2λ2α1 + α1λ1E[B21]

]
. (4.98)

Then, regarding Step 2, we find after some calculus

Ψ(1,0) =
1

α1α2 − E[B12]E[B21]

[
µ−11

(
α1λ1α2 + α2λ2E[B12]

)
µ−12

(
α2λ2α1 + α1λ1E[B21]

)] . (4.99)

We have thus found the stacked vector Ψ(1). These expressions could also have been

derived by sending t → ∞ in the expressions of the transient moments Ψ
(0,1)
t and

Ψ
(1,0)
t , respectively.
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For the second order stationary moments, we again go over the steps of Algorithm

4.2. Step 0 yields

Ψ(0,2) =

 2α1 −2E[B12] 0

−E[B21] α1 + α2 −E[B12]

0 −2E[B21] 2α2


−1

×

 E[λ1](2α1λ1+E[B2
11]) + E[λ2]E[B2

12]

E[λ1](E[B11]E[B21] + α2λ2) + E[λ2](E[B22]E[B12] + α1λ1)

E[λ1]E[B2
21] + E[λ2](2α2λ2+E[B2

22])


(4.100)

where the inverse may be explicitly computed in specific cases. For Step 1, we have,

after some elementary matrix computations, that

Ψ(1,1) =


α1 + µ1 −E[B12] 0 0

−E[B21] α2 + µ1 0 0

0 0 α1 + µ2 −E[B12]

0 0 −E[B21] α2 + µ2


−1 

E[λ21] + α1λ1E[Q1] + E[B11]E[λ1]
E[λ1λ2] + α2λ2E[Q1] + E[B21]E[λ1]
E[λ1λ2] + α1λ1E[Q2] + E[B12]E[λ2]
E[λ22] + α2λ2E[Q2] + E[B22]E[λ2]

 .
(4.101)

Finally, for Step 2 we have

Ψ(2,0) =

1/(2µ1) 0 0

0 1/(µ1 + µ2) 0

0 0 1/(2µ2)


2 0 0 0

0 1 1 0

0 0 0 2

Ψ(1,1). (4.102)

In line with earlier observations, the quasi-explicit results for the transient and

stationary moments become involved for larger values of the order n. We have checked

all above results using SymPy, a symbolic programming package.

4.C.4 Higher order moments

In this section, we provide some more detailed explicit matrices discussed in Sec-

tion 4.5, for the bivariate d = 2 setting for moments of order n = 3. For n = 3 we

have D(3, 2) = 20, and we consider the stacked vector (size 34)(
Ψ

(3)
t ,Ψ

(2)
t ,Ψ

(1)
t

)⊤
,

which satisfies the ODE

d

dt

Ψ
(3)
t

Ψ
(2)
t

Ψ
(1)
t

 = A35×35
3

Ψ
(3)
t

Ψ
(2)
t

Ψ
(1)
t

+

[
b2×1

032×1

]
. (4.103)
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The matrix F 34×34
3 is given by

F 34×34
3 =

[
F 14×14

2 014×20

G20×14
3 H14×14

3

]
, (4.104)

where

H14×14
3 =


M (3,0) 04×6 04×6 04×4

K(2,1) M (2,1) 06×6 06×4

06×4 K(1,2) M (1,2) 06×4

04×4 04×6 K(0,3) M (0,3)

 , G20×14
3 =


L(0,3)

L(1,2)

L(2,1)

04×20

 .
The elements of G20×20

3 require some more notation to describe, by introducing a

number of sub-matrices. First, we have L(0,3) =
[
L

(0,3)

λ1 04×2 L
(0,3)

λ2 04×7
]
, with

L
(0,3)

λ1 =


E[B3

11] E[B3
12]

E[B2
11]E[B21] E[B2

12]E[B22]

E[B11]E[B2
21] E[B12]E[B2

22]

E[B3
21] E[B3

22]

 ,

L
(0,3)

λ2 =


3E[B2

11] + 3α1λ1 3E[B2
12] 0

2E[B11]E[B21] + α2λ2 2E[B12]E[B22] + E[B2
11] + 2α1λ1 E[B2

12]

E[B2
21] 2E[B21]E[B11] + E[B2

22] + 2α2λ2 2E[B12]E[B22] + α1λ1
0 3E[B2

21] 3E[B2
22] + 3α2λ2

 .
Second, we have L(1,2) =

[
L

(1,2)

λ1 06×2 L
(1,2)

λ2 L
(1,2)

Q1λ1 06×3
]
, where

L
(1,2)

λ1 =



E[B2
11] 0

E[B11]E[B21] 0

E[B2
21] 0

0 E[B2
12]

0 E[B12]E[B22]

0 E[B2
22]


, L

(1,2)

λ2 =



2E[B11] 0 0

E[B21] E[B11] 0

0 2E[B21 0

0 2E[B12] 0

0 E[B22] E[B12]

0 0 2E[B22]


,

L
(1,2)

Q1L1

=



E[B2
11] + 2α1λ1 E[B2

12] 0 0

E[B11]E[B21] + α2λ2 E[B12]E[B22] + α1λ1 0 0

E[B2
21] E[B2

22] + 2α2λ2 0 0

0 0 E[B2
11] + 2α1λ1 E[B2

12]

0 0 E[B11]E[B21] + α2λ2 E[B12]E[B22] + α1λ1
0 0 E[B2

21] E[B2
22] + 2α2λ2


.
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Finally, L(2,1) =
[
06×7 L

(2,1)

Q1L1 L
(2,1)

Q2

]
, where

L
(2,1)

Q1L1 =



2E[B11] 0 0 0

2E[B21] 0 0 0

0 E[B12] E[B11] 0

0 E[B22] E[B21] 0

0 0 0 2E[B12]

0 0 0 2E[B22]


, L

(2,1)

Q2 =



α1λ1 0 0

α2λ2 0 0

0 α1λ1 0

0 α2λ2 0

0 0 α1λ1
0 0 α2λ2


.
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[2] Äıt-Sahalia, Y., Cacho-Diaz, J. A. & Laeven, R. J. A. (2015). Modeling

financial contagion using mutually exciting jump processes. Journal of Financial

Economics 117, 585-606.
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[32] Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling Ex-

tremal Events for Insurance and Finance. Springer, New York.

[33] Errais, E., Giesecke, K. & Goldberg, L. R. (2010). Affine point processes

and portfolio credit risk. Journal of Financial Mathematics 1, 642-665.

[34] Feller, W. (1970). An Introduction to Probability Theory and Its Applications:

Volume II. Second Edition. Wiley Series in Probability and Statistics. Wiley, New

York.

177



Bibliography

[35] Feng, M., Cai, S.-M., Tang, M., & Lai, Y.-C. (2019). Equivalence and

its invalidation between non-Markovian and Markovian spreading dynamics on

complex networks. Nature Communications 10, 3748.

[36] Foss, S., Konstantopoulos, T., & Zachary, S. (2007). Discrete and con-

tinuous time modulated random walks with heavy-tailed increments. Journal of

Theoretical Probability 20, 581-612.

[37] Ganesh, A., O’Connell, N. & Wischik, D. (2004). Big Queues. Springer,

Berlin.

[38] Gao, X., Zhou, X. & Zhu, L. (2018). Transform analysis for Hawkes processes

with applications in dark pool trading. Quantitative Finance 18, 265-282.

[39] Gao, X. & Zhu, L. (2018). Functional central limit theorems for stationary

Hawkes processes and application to infinite-server queues. Queueing Systems:

Theory and Applications 90, 161-206.

[40] Gao, X. & Zhu, L. (2018). Large deviations and applications for Markovian

Hawkes processes with a large initial intensity. Bernoulli 24, 2875-2905.

[41] Gao, X. & Zhu, L. (2018). Limit theorems for Markovian Hawkes processes

with a large initial intensity. Stochastic Processes and their Applications 128,

3807-3839.

[42] Gao, X. & Zhu, L. (2019). Affine point processes: Refinements to large-time

asymptotics. Preprint. Available at https://arxiv.org/pdf/1903.06371.pdf.

[43] Gao, X. & Zhu, L. (2021). Precise deviations for Hawkes processes. Bernoulli

27, 221-248.

[44] Guo, Q., Remillard, B. & Swishchuk, A. (2020) Multivariate general

compound point processes in limit order books. Risks 8, 98.

[45] Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting

point processes. Biometrika 58, 83-90.

[46] Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes.

Journal of the Royal Statistical Society. Series B (Methodological), 438-443.

[47] Hawkes, A. G. & Oakes, D. (1974). A cluster representation of a self-exciting

process. Journal of Applied Probability 11, 493-503.

178



Bibliography

[48] Hawkes, A. G. (2018). Hawkes processes and their applications to finance: A

review. Quantitative Finance 18, 193-198.

[49] Ikefuji, M., R. J. A. Laeven, J. R. Magnus & Y. Yue (2022). Earthquake

risk embedded in property prices: Evidence from five Japanese cities. Journal of

the American Statistical Association 117, 82-93.
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Summary

Our world is becoming increasingly interconnected, in an economic, social, political,

and environmental sense. An event occurring at one time and location can trigger new

events, in the future and other locations. As a result, such sequences of events have

a contagious character: an earthquake that causes aftershocks, a virus that spreads

in different countries, or financial panic that ripples across the international markets.

The consequence of our interconnected world is that the behavior of such sequences

of events has become increasingly complex, spreading over time and space, which

warrants the search for mathematical models to describe this behavior.

It is a challenging task to build a mathematical contagion model that is general

and flexible enough to accurately describe how different types of sequences of events

spread. One candidate class of models is the class of mutually exciting point processes,

which is studied in this thesis. A point process counts the points, which we call events,

that occur over time. What makes these processes interesting is the mutually exciting

part, which is a built-in feedback system that captures the contagious character of

how events spread. When an initial event occurs at a certain location, it increases,

or excites, the likelihood that events will occur in the future, at the same location

as well as other locations. After a second event has occurred, it can in turn increase

the likelihood of even more events in the future, both in the original location and in

other locations. This is where the term mutually exciting comes from since events at

different times and in different locations can have mutual effects on each other.

This thesis studies certain mathematical properties of mutually exciting point pro-

cesses. In a general setting, it characterizes what the distribution is of the sequences

of events. This is then used to obtain results on specific mathematical objects of inter-

est: certain probabilities, expected values, variances, and more. Another aspect was

to have flexible parameters by imposing limited restrictions on the model, allowing for

greater applicability. The derived results can be used to efficiently calculate certain

objects of interest and allow us to answer related questions. In what follows, I give an

impression of the results in each chapter.

In Chapter 2, we introduce the mathematical objects that are needed to fully de-

scribe the dynamics of events that spread across time and locations. We heavily use

the so-called branching representation, a tree-like structure that is an alternative de-
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scription of the mutually exciting point process. This representation, in combination

with the exploitation of the feedback mechanism, allowed us to fully characterize the

distribution of the sequences of events, by using a fixed-point argument. The obtained

characterization is in a general setting in terms of parameter choice and the number

of locations, opening the door to calculating probabilities, expected values, variances,

and more. We also extended the point process to an induced population process, which

means that we do not only count the number of events, but we allow for the number

of events to decrease as well. One can think of practical applications in the context

of epidemiology, where the population process would represent the number of infected

individuals since this can fluctuate over time.

In Chapter 3, we focus on the compound version of the mutually exciting point

process, motivated by the insurance industry. From the point of view of insurance

companies, events such as an earthquake can trigger insurance claims that they have

to pay out. The compound model consists of the sum of these claims and gives the

insurance company a grip on the expected number of claims as well as their sizes, which

is important in determining how much initial capital they need to allocate for these

claims. For the mutually exciting point process as well as for the compound version,

we derive the so-called Large Deviations Principle, which allows us to establish two

important results. First, we characterize the probability of ruin for the compound

model, which is the probability that the insurance company goes bankrupt because

of too many or too large claims, and not having enough initial capital to cover it.

Second, we derive a method to calculate exceedance probabilities, the probability that

the compound model exceeds a certain threshold. Both these probabilities are usually

very small, difficult to calculate, and computationally heavy to simulate. To mediate

these problems, we develop and apply an importance sampling method to approximate

these probabilities, which we then prove to be optimal.

In Chapter 4, we focus the setting of Chapter 2 on a more narrow class of mutually

exciting point processes. By choosing the parameters in a certain way, the process

obtains the Markov property, giving us a powerful tool to analyze the process. We

obtain a more explicit characterization of the distribution of the spread of events,

given in terms of systems of ordinary differential equations. We then reveal a recursive

and nested structure, allowing us to calculate moments up to a certain order. Our

method yields explicit expressions of the moments and brings important computational

advantages.
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Nederlandse Samenvatting (Summary

in Dutch)

Onze wereld is in de loop der tijd steeds meer met elkaar verbonden geraakt, in

economische, sociale, politieke en milieutechnische zin. Een gebeurtenis die zich op

een bepaalde tijd en plaats voordoet, kan nieuwe gebeurtenissen in de toekomst en

op andere plaatsen veroorzaken. Hierdoor hebben dergelijke reeksen gebeurtenissen

een besmettelijk karakter: een aardbeving die naschokken veroorzaakt, een virus dat

zich in verschillende landen verspreidt, of financiële paniek die zich over internationale

markten verspreidt. Het gevolg van onze onderling verbonden wereld is dat de dy-

namiek van dergelijke reeksen gebeurtenissen steeds complexer is geworden, wat de

zoektocht naar wiskundige modellen rechtvaardigt om deze te kunnen analyseren.

Het is een uitdagende taak om een wiskundig besmettingsmodel te bouwen dat al-

gemeen en flexibel genoeg is om nauwkeurig te beschrijven hoe verschillende soorten

gebeurtenissen zich verspreiden over tijd en ruimte. Een potentiële klasse van mod-

ellen zijn mutually exciting punt processen, die in dit proefschrift worden bestudeerd.

Een punt proces telt punten, wat wij gebeurtenissen noemen, die in de loop van

de tijd plaatsvinden. Wat deze processen interessant maakt, is het mutally exciting

deel, wat in essentie een ingebouwd feedbacksysteem is dat het besmettelijke karakter

vastlegt van hoe gebeurtenissen zich verspreiden. Wanneer een eerste gebeurtenis op

een bepaalde tijd en locatie plaatsvindt, vergroot, of prikkelt (excite), het de kans dat

gebeurtenissen in de toekomst zullen plaatsvinden, op dezelfde locatie en op andere

locaties. Nadat een tweede gebeurtenis heeft plaatsgevonden, kan het op zijn beurt de

kans op nog meer gebeurtenissen in de toekomst vergroten, zowel op de oorspronkelijke

locatie als op andere locaties. Hier komt de term mutually exciting vandaan, omdat

gebeurtenissen op verschillende tijden en locaties wederzijds effect op elkaar kunnen

hebben.

Dit proefschrift bestudeert bepaalde wiskundige eigenschappen van mutually excit-

ing punt processen om vervolgens resultaten te verkrijgen over specifieke wiskundige

objecten van belang: bepaalde kansen, verwachtingswaarden, varianties en meer. In

deze algemene setting met flexibele parameters door weinig beperkingen op het model

op te leggen, zijn de verkregen resulaten breed toepasbaar en omvattend. Deze theo-
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retische resultaten kunnen worden gebruikt om bepaalde objecten van belang efficiënt

te berekenen en stellen ons in staat gerelateerde vragen te beantwoorden. Hieronder

geef ik een indruk van de resultaten in elk hoofdstuk.

In Hoofdstuk 2 introduceren we de wiskundige objecten die nodig zijn om de

dynamiek van gebeurtenissen die zich verspreiden over tijd en locaties volledig te

beschrijven. We maken veel gebruik van de zogenaamde branching representation, een

boomachtige structuur die een alternatieve beschrijving is van het mutually exciting

punt proces. Deze representatie, in combinatie met het slim benutten van het feedback-

mechanisme, stelt ons in staat om de verdeling van de reeks gebeurtenissen volledig te

karakteriseren. Dit verkrijgen we door een vast-punt relatie uit de boomachtige struc-

tuur af te leiden. Deze karakterisering is behoorlijk algemeen, in de zin dat we een

flexibele parameterkeuze hebben en een vrije keuze in aantal locaties. We hebben ook

het punt proces uitgebreid tot een populatie proces, wat betekent dat we niet alleen het

aantal gebeurtenissen tellen, maar ook toestaan dat het aantal gebeurtenissen afneemt.

Praktische toepassingen in dit opzicht zijn te vinden in de context van epidemiologie,

waarbij het populatie proces het aantal gëınfecteerde personen zou vertegenwoordigen.

In Hoofdstuk 3 richten we ons op de compound versie van het mutually exciting punt

proces, gemotiveerd door de verzekeringsindustrie. Voor verzekeringsmaatschappijen

kunnen gebeurtenissen zoals een aardbeving aanzet geven tot verzekeringsclaims, die

ze vervolgens moeten uitbetalen. Het compound model bestaat uit de som van deze

claims en geeft de verzekeringsmaatschappij grip op het verwachte aantal claims en

hun omvang, wat belangrijk is om te bepalen hoeveel solvabilitetitskapitaal ze moeten

toewijzen om de claims uit te kunnen betalen. Zowel voor het mutually exciting punt

proces als voor de compound model, leiden we, gebruikmakend van de resultaten van

Hoofdstuk 2, het zogenaamde Large Deviations Principle af, wat ons in staat stelt

twee belangrijke resultaten af te leiden. Ten eerste karakteriseren we de kans op fail-

lissement voor het compound model, d.w.z. de kans dat de verzekeringsmaatschappij

failliet gaat vanwege te veel of te grote claims, en niet genoeg solvabilitetitskapitaal

heeft om het te dekken. Ten tweede leiden we een methode af om overschrijdingskansen

te berekenen, d.w.z. de kans dat het compound model een bepaalde grens overschrijdt.

Beide kansen zijn meestal erg klein, moeilijk te berekenen en computationeel zwaar

om te simuleren. Om dit te verhelpen, ontwikkelen en passen we een importance sam-

pling methode toe om deze kansen te benaderen, en vervolgens bewijzen we dat deze

methode optimaal is.

In Hoofdstuk 4 richten beschouwen we een iets specifieker model van Hoofdstuk

2, een subklasse van mutually exciting punt processen. Door de parameters op een

bepaalde manier te kiezen, verkrijgt het proces de Markov eigenschap, wat ons een

krachtig hulpmiddel geeft om het proces te analyseren. We verkrijgen een meer expli-
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ciete karakterisering van de verdeling van de reeks gebeurtenissen, gegeven in termen

van systemen van gewone differentiaalvergelijkingen. Vervolgens ontsluieren we een

recursieve en ingebedde structuur, waardoor we momenten tot een bepaalde orde kun-

nen berekenen. Onze methode levert expliciete uitdrukkingen van de momenten op en

brengt belangrijke computationele voordelen met zich mee.
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