4 research outputs found

    Decision rules for robotic mobile fulfillment systems

    Get PDF
    The Robotic Mobile Fulfillment Systems (RMFS) is a new type of robotized, parts-to-picker material handling system, designed especially for e-commerce warehouses. Robots bring movable shelves, called pods, to workstations where inventory is put on or removed from the pods. This paper simulates both the pick and replenishment process and studies the order assignment, pod selection and pod storage assignment problems by evaluating multiple decision rules per problem. The discrete event simulation uses realistic robot movements and keeps track of every unit of inventory on every pod. We analyze seven performance measures, e.g. throughput capacity and order due time, and find that the unit throughput is strongly correlated with the other performance measures. We vary the number of robots, the number of pick stations, the number of SKUs (stock keeping units), the order size and whether returns need processing or not. The decision rules for pick order assignment have a strong impact on the unit throughput rate. This is not the case for replenishment order assignment, pod selection and pod storage. Furthermore, for warehouses with a large number of SKUs, more robots are needed for a high unit throughput rate, even if the number of pods and the dimensions of the storage area remain the same. Lastly, processing return orders only affects the unit throughput rate for warehouse with a large number of SKUs and large pick orders

    On the performance of robotic parts-to-picker order picking systems

    Get PDF
    Order picking is the activity in which a number of items are retrieved from a warehousing system to satisfy a number of customer orders. Automating order picking systems has become a common response to the wide variety of products and components stored in today’s warehouses and the short delivery lead times requested by today’s customers. As a result, new technical solutions have reached the market, including robotic parts-to-picker order picking systems such as robot-based compact storage and retrieval systems (RCSRSs) and robotic mobile fulfilment systems (RMFSs).\ua0Despite the increased use of robotic parts-to-picker order picking systems, knowledge about how they perform in terms of throughput, order lead time, human factors, quality, flexibility, operational efficiency, and investment and operational costs needs to be further developed, as does knowledge about how their performance is affected by the order picking system’s design and context. Accordingly, the purpose of this thesis is to expand knowledge about the performance of robotic parts-to-picker order picking systems by investigating how their design and context influence their performance. \ua0The thesis is built upon three studies: a systematic literature review study focusing on automated order picking systems, a multiple-case study on RCSRSs, and a single-case study on RMFSs. First, the systematic literature review study on the performance of automated order picking systems provides an overview of literature on order picking systems to date, aspects of their performance, and how their performance relates to their design. Second, the multiple-case study sheds light on characteristics of the performance of RCSRSs and the relationships between their performance and design. Third and last, the single-case study affords insights on how the context of RMFSs affects their performance.\ua0The thesis contributes to practice by providing guidance to decision makers within industry in terms of the performance to expect of robotic parts-to-picker OPSs depending on their design and context. In turn, such knowledge can facilitate the selection and design of an OPS or else the redesign of a current system. At the same time, the thesis contributes to theory by providing a synthesis of literature addressing the performance of automated OPSs and by outlining the relationships between their design and performance

    Simulating Storage Policies for an Automated Grid-Based Warehouse System

    No full text
    Beckschäfer M, Malberg S, Tierney K, Weskamp C. Simulating Storage Policies for an Automated Grid-Based Warehouse System. In: Bektaş T, Coniglio S, Martinez-Sykora A, Voß S, eds. Computational Logistics: 8th International Conference, ICCL 2017, Southampton, UK, October 18-20, 2017, Proceedings. Lecture Notes in Computer Science. Vol 10572. Cham: Springer International Publishing; 2017: 468-482
    corecore