26,290 research outputs found

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    Simulating typical entanglement with many-body Hamiltonian dynamics

    Full text link
    We study the time evolution of the amount of entanglement generated by one dimensional spin-1/2 Ising-type Hamiltonians composed of many-body interactions. We investigate sets of states randomly selected during the time evolution generated by several types of time-independent Hamiltonians by analyzing the distributions of the amount of entanglement of the sets. We compare such entanglement distributions with that of typical entanglement, entanglement of a set of states randomly selected from a Hilbert space with respect to the unitarily invariant measure. We show that the entanglement distribution obtained by a time-independent Hamiltonian can simulate the average and standard deviation of the typical entanglement, if the Hamiltonian contains suitable many-body interactions. We also show that the time required to achieve such a distribution is polynomial in the system size for certain types of Hamiltonians.Comment: Revised, 11 pages, 7 figure

    Simulating Hamiltonian dynamics with a truncated Taylor series

    Get PDF
    We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations to directly apply the truncated Taylor series.Comment: 5 page

    Hamiltonian Simulation Using Linear Combinations of Unitary Operations

    Get PDF
    We present a new approach to simulating Hamiltonian dynamics based on implementing linear combinations of unitary operations rather than products of unitary operations. The resulting algorithm has superior performance to existing simulation algorithms based on product formulas and, most notably, scales better with the simulation error than any known Hamiltonian simulation technique. Our main tool is a general method to nearly deterministically implement linear combinations of nearby unitary operations, which we show is optimal among a large class of methods.Comment: 18 pages, 3 figure

    Global Demons in Field Theory : Critical Slowing Down in the Xy Model

    Full text link
    We investigate the use of global demons, a `canonical dynamics', as an approach to simulating lattice regularized field theories. This deterministically chaotic dynamics is non-local and non-Hamiltonian, and preserves the canonical measure rather than δ(H−E)\delta(H-E). We apply this inexact dynamics to the 2D XY model, comparing to various implementations of hybrid Monte Carlo, focusing on critical exponents and critical slowing down. In addition, we discuss a scheme for making energy non-conserving dynamical algorithms exact without the use of a Metropolis hit.Comment: 23 pages text plus 12 figures [Submitted to Nuc. Phys. B, 7/92

    Simulating Hamiltonian dynamics using many-qudit Hamiltonians and local unitary control

    Get PDF
    When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that aren't universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner et. al. [Phys. Rev. A, 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation
    • …
    corecore