2,402,832 research outputs found

    Simulated Tornado Optimization

    Full text link
    We propose a swarm-based optimization algorithm inspired by air currents of a tornado. Two main air currents - spiral and updraft - are mimicked. Spiral motion is designed for exploration of new search areas and updraft movements is deployed for exploitation of a promising candidate solution. Assignment of just one search direction to each particle at each iteration, leads to low computational complexity of the proposed algorithm respect to the conventional algorithms. Regardless of the step size parameters, the only parameter of the proposed algorithm, called tornado diameter, can be efficiently adjusted by randomization. Numerical results over six different benchmark cost functions indicate comparable and, in some cases, better performance of the proposed algorithm respect to some other metaheuristics.Comment: 6 pages, 15 figures, 1 table, IEEE International Conference on Signal Processing and Intelligent System (ICSPIS16), Dec. 201

    Generalized Simulated Annealing

    Full text link
    We propose a new stochastic algorithm (generalized simulated annealing) for computationally finding the global minimum of a given (not necessarily convex) energy/cost function defined in a continuous D-dimensional space. This algorithm recovers, as particular cases, the so called classical ("Boltzmann machine") and fast ("Cauchy machine") simulated annealings, and can be quicker than both. Key-words: simulated annealing; nonconvex optimization; gradient descent; generalized statistical mechanics.Comment: 13 pages, latex, 4 figures available upon request with the authors

    Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS)

    Get PDF
    Impact of global warming on the Indian monsoon climate is examined using Hadley Centre's highresolution regional climate model, PRECIS (Providing REgional Climates for Impact Studies). Three simulations from a 17-member Perturbed Physics Ensemble generated using Hadley Center Coupled Model (HadCM3) for the Quantifying Uncertainty in Model Predictions (QUMP) project, are used to drive PRECIS. The PRECIS simulations corresponding to the IPCCSRES A1B emission scenario are carried out for a continuous period of 1961-2098. The model shows reasonable skill in simulating the monsoon climate over India. The climate projections are examined over three time slices, viz. short (2020s, i.e. 2011-2040), medium (2050s, i.e. 2041-2070) and long (2080s, i.e. 2071-2098). The model projections indicate significant warming over India towards the end of the 21st century. The summer monsoon precipitation over India is expected to be 9-16 more in 2080s compared to the baseline (1970s, i.e. 1961-1990) under global warming conditions. Also, the rainy days are projected to be less frequent and more intense over central India

    Weight-Preserving Simulated Tempering

    Get PDF
    Simulated tempering is popular method of allowing MCMC algorithms to move between modes of a multimodal target density {\pi}. One problem with simulated tempering for multimodal targets is that the weights of the various modes change for different inverse-temperature values, sometimes dramatically so. In this paper, we provide a fix to overcome this problem, by adjusting the mode weights to be preserved (i.e., constant) over different inverse-temperature settings. We then apply simulated tempering algorithms to multimodal targets using our mode weight correction. We present simulations in which our weight-preserving algorithm mixes between modes much more successfully than traditional tempering algorithms. We also prove a diffusion limit for an version of our algorithm, which shows that under appropriate assumptions, our algorithm mixes in time O(d [log d]^2)

    Simulated breath waveform control

    Get PDF
    Subsystem was developed which provides twelve waveform controls to breath drive mechanism. Twelve position, magnetically actuated rotary switch is connected to one end of crankshaft drive, such that it makes one complete revolution for each simulated breath. Connections with common wired point are included in modifications made to standard motor speed controller

    Simulated Annealing for JPEG Quantization

    Full text link
    JPEG is one of the most widely used image formats, but in some ways remains surprisingly unoptimized, perhaps because some natural optimizations would go outside the standard that defines JPEG. We show how to improve JPEG compression in a standard-compliant, backward-compatible manner, by finding improved default quantization tables. We describe a simulated annealing technique that has allowed us to find several quantization tables that perform better than the industry standard, in terms of both compressed size and image fidelity. Specifically, we derive tables that reduce the FSIM error by over 10% while improving compression by over 20% at quality level 95 in our tests; we also provide similar results for other quality levels. While we acknowledge our approach can in some images lead to visible artifacts under large magnification, we believe use of these quantization tables, or additional tables that could be found using our methodology, would significantly reduce JPEG file sizes with improved overall image quality.Comment: Appendix not included in arXiv version due to size restrictions. For full paper go to: http://www.eecs.harvard.edu/~michaelm/SimAnneal/PAPER/simulated-annealing-jpeg.pd

    The clustering of simulated quasars

    Full text link
    We analyze the clustering properties of quasars simulated using a semianalytic model built on the Millennium Simulation, with the goal of testing scenarios in which black hole accretion and quasar activity are triggered by galaxy mergers. When we select quasars with luminosities in the range accessible by current observations, we find that predicted values for the redshift evolution of the quasar bias agree rather well with the available data and the clustering strength depends only weakly on luminosity. This is independent of the lightcurve model assumed, since bright quasars are black holes accreting close to the Eddington limit. We also used the large catalogues of haloes available for the Millennium Simulation to test whether recently merged haloes exhibit a stronger large-scale clustering than the typical haloes of the same mass. This effect might help to explain the very high clustering strength observed for z~4 quasars. However, we do not detect any significant excess bias for the clustering of merger remnants, suggesting that objects of merger-driven nature do not cluster significantly differently than other objects of the same characteristic mass.Comment: 4 pages, 2 figures. To appear in the proceedings of "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", Eds. Sebastian Heinz, Eric Wilcots (AIP conference series

    Simulated Annealing for Topological Solitons

    Get PDF
    The search for solutions of field theories allowing for topological solitons requires that we find the field configuration with the lowest energy in a given sector of topological charge. The standard approach is based on the numerical solution of the static Euler-Lagrange differential equation following from the field energy. As an alternative, we propose to use a simulated annealing algorithm to minimize the energy functional directly. We have applied simulated annealing to several nonlinear classical field theories: the sine-Gordon model in one dimension, the baby Skyrme model in two dimensions and the nuclear Skyrme model in three dimensions. We describe in detail the implementation of the simulated annealing algorithm, present our results and get independent confirmation of the studies which have used standard minimization techniques.Comment: 31 pages, LaTeX, better quality pics at http://www.phy.umist.ac.uk/~weidig/Simulated_Annealing/, updated for publicatio
    corecore