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Abstract
Simulated tempering is a popular method of allowing MCMC algorithms to move between modes of a multimodal target
density π . One problem with simulated tempering for multimodal targets is that the weights of the various modes change for
different inverse-temperature values, sometimes dramatically so. In this paper, we provide a fix to overcome this problem,
by adjusting the mode weights to be preserved (i.e. constant) over different inverse-temperature settings. We then apply
simulated tempering algorithms to multimodal targets using our mode weight correction. We present simulations in which
our weight-preserving algorithm mixes between modes much more successfully than traditional tempering algorithms. We
also prove a diffusion limit for an version of our algorithm, which shows that under appropriate assumptions, our algorithm
mixes in time O(d[log d]2).

Keywords Simulated tempering · Parallel tempering · MCMC · Multimodality and Monte Carlo

1 Introduction

Consider the problem of drawing samples from a target dis-
tribution, π(x) on a d-dimensional state space X where π(·)
is only known up to a scaling constant. A popular approach
is to use Markov chain Monte Carlo (MCMC) which uses a
Markov chain that is designed in such away that the invariant
distribution of the chain is π(·).

However, if π(·) exhibits multimodality, then the major-
ity of MCMC algorithms which use tuned localised proposal
mechanisms, e.g. Roberts et al. (1997) and Roberts and
Rosenthal (2001), fail to explore the state space, which leads
to biased samples. Two approaches to overcome this mul-
timodality issue are the simulated and parallel tempering
algorithms. These methods augment the state space with
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auxiliary target distributions that enable the chain to rapidly
traverse the entire state space.

The major problem with these auxiliary targets is that in
general theydonot preserve regionalmass; seeWoodard et al.
(2009a, b) and Bhatnagar and Randall (2016). This problem
can result in the required run time of the simulated and par-
allel tempering algorithms growing exponentially with the
dimensionality of the problem.

In this paper, we provide a fix to overcome this prob-
lem, by adjusting the mode weights to be preserved (i.e.
constant) over different inverse temperatures. We apply our
mode weight correction to produce new simulated and paral-
lel tempering algorithms for multimodal target distributions.
We show that assuming the chain mixes at the hottest tem-
perature, our mode-preserving algorithm will mix well for
the original target as well.

This paper is organised as follows. Section 2 reviews the
simulated and parallel tempering algorithms and the existing
literature for their optimal set-up. Section 3 describes the
problems with modal weight preservation that are inherent
with the traditional approaches to tempering, and introduces
a prototype solution called the HAT algorithm that is similar
to the parallel tempering algorithm but uses novel auxiliary
targets. Section 4 presents some simulation studies of the
new algorithms. Section 5 provides a theoretical analysis of a
diffusion limit and the resulting computational complexity of
the HAT algorithm in high dimensions. Section 6 concludes
and provides a discussion of further work.
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2 Tempering algorithms

There is an array of methodology available to overcome the
issues of multimodality inMCMC, the majority of which use
state space augmentation, e.g. Wang and Swendsen (1990),
Geyer (1991), Marinari and Parisi (1992), Neal (1996), Kou
et al. (2006) and Nemeth et al. (2017). Auxiliary distribu-
tions that allow a Markov chain to explore the entirety of
the state space are targeted, and their mixing information is
then passed on to aid intermodal mixing in the desired target.
A convenient approach for augmentation methods, such as
the popular simulated tempering (ST) and parallel tempering
(PT) algorithms introduced inGeyer (1991) andMarinari and
Parisi (1992), is to use power-tempered target distributions,
for which the target distribution at inverse temperature level
β is defined as

πβ(x) ∝ [π(x)]β

for β ∈ (0, 1]. For each algorithm, one needs to choose a
sequence of n + 1 “inverse temperatures” such that Δ :=
{β0, . . . , βn} where 0 ≤ βn < βn−1 < · · · < β1 < β0 = 1,
so that πβ0 equals the original target density π , and hopefully
the hottest distribution πβn (x) is sufficiently flat that it can
be easily sampled.

The ST algorithm augments the original state space
with a single-dimensional component indicating the current
inverse-temperature level creating a (d + 1)-dimensional
chain, (β, X), defined on the extended state space {β0, . . . ,

βn} × X that targets

π(β, x) ∝ K (β)π(x)β (1)

where ideally K (β) = [∫
x π(x)βdx

]−1
, resulting in a uni-

form marginal distribution over the temperature component
of the chain. Techniques to learn K (β) exist in the literature,
e.g. Wang and Landau (2001) and Atchadé and Liu (2004),
but these techniques can bemisleading unless usedwith care.
The ST algorithm procedure is given in Algorithm 1.

The PT approach is designed to overcome the issues aris-
ing due to the typically unknown marginal normalisation
constants. The PT algorithm runs a Markov chain on an aug-
mented state space X (n+1) with target distribution defined
as

πn(x0, x1, . . . , xn) ∝ πβ0(x0)πβ1(x1) . . . πβn (xn).

The PT algorithm procedure is given in Algorithm 2.

2.1 Optimal scaling for the ST and PT algorithms

Atchadé et al. (2011) and Roberts and Rosenthal (2014)
investigated the problem of selecting optimal inverse-tempe-

Algorithm 1 The Simulated Tempering (ST) Algorithm
Initialisation: A temperature schedule Δ; initialising chain value,

(βT 0 , x0); a within-temperature proposal mechanism, qβ(x, ·); s,
the number of algorithm iterations and m, the number of within-
temperature proposals.

1: function ST(Δ, x0, β0)
2: for i ← 1 to s do
3: t ← (i − 1) + (i − 1)(m + 1)
4: w ← Unif{−1, 1}
5: T

′ ← T t+w
6: Compute:

A = min

(
1,

K (βT ′ )π(xt )βT
′

K (βT t )π(xt )βT t

)
. (2)

7: Sample U ∼ Unif(0, 1)
8: if U ≤ A then
9: (βT t+1 , xt+1) ← (βT ′ , xt )
10: else
11: (βT t+1 , xt+1) ← (βT t , xt )
12: end if
13: Perform m updates to the X -marginal according to

qβT t+1 (x, ·) to get {xt+2, . . . , xt+m+1}.
14: end for
15: return {(βT 0 , x0), (βT 1 , x1), . . . , (βT s+s(m+1) , xs+s(m+1))}
16: end function

Algorithm 2 The Parallel Tempering (PT) Algorithm
Initialisation: A temperature schedule Δ; initialising chain values,

X0 = {x00 , x01 , . . . , x0n }; a within-temperature proposal mechanism,
qβ(x, ·); s, the number of algorithm iterations and m, the number of
within-temperature proposals.

1: function PT(Δ, X0)
2: for i ← 1 to s do
3: t ← (i − 1) + (i − 1)(m + 1)
4: Sample k uniformly from {0, 1, . . . , (n − 1)}
5: Compute:

A = min

(
1,

πβk+1 (x
t
k)πβk (x

t
k+1)

πβk (x
t
k)πβk+1 (x

t
k+1)

)
. (3)

6: Sample U ∼ Unif(0, 1)
7: if U ≤ A then
8: Xt+1 ← {xt0, . . . , xtk+1, x

t
k , . . . , x

t
n}

9: else
10: Xt+1 ← Xt

11: end if
12: for p ← 0 to n do
13: m updates to the pth-marginal chain according to qβp (x, ·)

to get {xt+2
p , . . . , xt+m+1

p }.
14: end for
15: end for
16: return {X0, X1, . . . , Xs+s(m+1)}
17: end function

rature spacings for the ST and PT algorithms. Specifically, if
a move between two consecutive temperature levels, β and
β ′ = β+ε, is to be proposed, then what is the optimal choice
of ε? Too large, and the move will probably be rejected; too
small, and the move will accomplish little (similar to the sit-
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uation for the Metropolis algorithm, cf. Roberts et al. 1997
and Roberts and Rosenthal 2001).

For ease of analysis, Atchadé et al. (2011) and Roberts
and Rosenthal (2014) restrict to d-dimensional target distri-
butions of the i.i.d. form:

π(x) ∝
d∏

i=1

f (xi ). (4)

They assume that the process mixes immediately (i.e.
infinitely quickly) within each temperature, to allow them to
concentrate solely on the mixing of the inverse-temperature
process itself. To achieve non-degeneracy of the limiting
behaviour of the inverse-temperature process as d → ∞,
the spacings are scaled as O(d−1/2), i.e. ε = �/d1/2 where
� = �(β) a positive value to be chosen optimally.

Under these assumptions, Atchadé et al. (2011) and
Roberts and Rosenthal (2014) prove that the inverse-tempe-
rature processes of the ST and PT algorithms converge, when
speeded up by a factor of d, to a specific diffusion limit,
independent of dimension, which thus mixes in time O(1),
implying that the original ST and PT algorithms mix in time
O(d) as d → ∞. They also prove that the mixing times of
the ST and PT algorithms are optimised when the value of �

is chosen to maximise the quantity

�2 × 2Φ

(
−�

√
I (β)

2

)

where I (β) = Varπβ

(
log f (x)

)
. Furthermore, this optimal

choice of � corresponds to an acceptance rate of inverse-
temperaturemoves of 0.234 (to three decimal places), similar
to the earlier Metropolis algorithm results of Roberts et al.
(1997) and Roberts and Rosenthal (2001).

From a practical perspective, setting up the temperature
levels to achieve optimality can be done via a stochastic
approximation approach (Robbins and Monro 1951), simi-
larly toMiasojedowet al. (2013)who use an adaptiveMCMC
framework (see, e.g. Roberts and Rosenthal 2009).

2.2 Torpidmixing of ST and PT algorithms

The above optimal scaling results suggest that the mixing
time of the ST and PT algorithms through the temperature
schedule is O(d), i.e. grows only linearly with the dimen-
sion of the problem, which is very promising. However,
this optimal, non-degenerate scaling was derived under the
assumption of immediate, infinitely fast within-temperature
mixing, which is almost certainly violated in any real appli-
cation. Indeed, this assumption appears to be overly strong
once one considers the contrasting results regarding the scal-
ability of the ST algorithm from Woodard et al. (2009a, b).
Their approach instead relies on a detailed analysis of the

spectral gap of the ST Markov chain and how it behaves
asymptotically in dimension. They show that in cases where
the different modal structures/scalings are distinct, this can
lead to mixing times that grow exponentially in dimension,
and one can only hope to attain polynomial mixing times in
special cases where the modes are all symmetric.

The fundamental issue with the ST/PT approaches is that
in cases where the modes are not symmetric, the tempered
targets do not preserve the regional/modal weights. That
motivates the current work, which is designed to preserve
the modal weights even when performing tempering trans-
formations, as we discuss next.

Interestingly, a lack of modal symmetry in the multimodal
target will affect essentially all the standard multimodal-
focused methods: the Equi-Energy Sampler of Kou et al.
(2006), the Tempered Transitions of Neal (1996) and the
Mode Jumping Proposals of Tjelmeland andHegstad (2001),
all suffer in this setting. Hence, thework in this paper is appli-
cable beyond the immediate setting of the ST/PT approaches.

3 Weight-stabilised tempering

In this section, we present our modifications which preserve
the weights of the different modes when performing tem-
pering transformations. We first motivate our algorithm by
considering mixtures of Gaussian distributions.

Consider a d-dimensional bimodal Gaussian target distri-
bution with means, covariance matrices and weights given
by μi , Σi , wi for i = 1, 2 respectively. Hence, the target
density is given by:

π(x) = w1φ(x, μ1,Σ1) + w2φ(x, μ2,Σ2), (5)

where φ(x, μ,Σ) is the pdf of a multivariate Gaussian with
mean μ and covariance matrix Σ . Assuming the modes are
well separated, the power-tempered target from (1) can be
approximated by a bimodal Gaussian mixture (cf. Woodard
et al. 2009b; Tawn 2017):

π(x) = W(1,β)φ

(
x, μ1,

Σ1

β

)
+ W(2,β)φ

(
x, μ2,

Σ2

β

)
,

(6)

where the weights are approximated as

W(i,β) = w
β
i |Σi | 1−β

2

w
β
1 |Σ1| 1−β

2 + w
β
2 |Σ2| 1−β

2

∝ w
β
i |Σi | 1−β

2 . (7)

A one-dimensional example of this is illustrated in Fig. 1,
which shows plots of a bimodal Gaussian mixture distribu-
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Fig. 1 Power-tempered target densities of a bimodal Gaussian mixture
using inverse-temperature levels β = {1, 0.1, 0.05, 0.005}, respec-
tively. At the hot state, it is evident that the mode centred on 40 begins
to dominate the weight as β → ∞

tion as β → 0. Clearly, the second mode, which was origi-
nally wide but very short and hence of low weight, takes on
larger and larger weight as β → 0, thus distorting the prob-
lem and making it very difficult for a tempering algorithm to
move from the second mode to the first when β is small.

Higher dimensionality makes this weight-distorting issue
exponentially worse. Consider the situation with w1 = w2

but Σ1 = Id and Σ2 = σ 2 Id where Id is the d × d identity
matrix. Then,

W(2,β)

W(1,β)

≈ σ d(1−β), (8)

so the ratio of the weights degenerates exponentially fast in
the dimensionality of the problem for a fixed β. This heuris-
tic result in (8) shows that between levels there can be a
“phase-transition” in the location of probability mass, which
becomes critical as dimensionality increases.

3.1 Weight-stabilised Gaussianmixture targets

Consider targeting a Gaussian mixture given by

π(x) ∝
J∑

j=1

w jφ(x, μ j ,Σ j ) (9)

in the (practically unrealistic) setting where the target is
a Gaussian mixture with known parameters, including the
weights. By only tempering the variance component of the
modes, one can spread out the modes while preserving the
component weights. We formalise this notion as follows:

Definition 1 (Weight-Stabilised GaussianMixture (WSGM))
For a Gaussian mixture target distribution π(·), as in (9),

the weight-stabilised Gaussian mixture (WSGM) target at
inverse-temperature level β is defined as
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Fig. 2 For a bimodal Gaussian mixture target, plots of the nor-
malised tempered target densities generated by both powering the target
(solid black line) and the WSGM targets (dashed red line) at inverse-
temperature levels β = {1, 0.1, 0.05, 0.005}. (Color figure online)

πWS
β (x) ∝

J∑

j=1

w jφ

(
x, μ j ,

Σ j

β

)
. (10)

Figure 2 shows the comparison between the target distri-
butions used when using power-based targets vs the WSGM
targets for the example from Fig. 1.

Using these WSGM targets in the PT scheme can give
substantially better performance than when using the stan-
dard power-based targets. This is very clearly illustrated
in Sect. 4.1. Henceforth, when the term “WSGM ST/PT
Algorithm” is used, it refers to the implementation of the
standard ST/PT algorithm but now uses the WSGM targets
from (10).

3.2 Approximating theWSGM targets

In practice, the actual target distribution would be non-
Gaussian and only approximated by a Gaussian mixture
target. On the other hand, due to the improved perfor-
mance gained from using the WSGM over just targeting
the respective power-tempered mixture, there is motivation
to approximate the WSGM in the practical setting where
parameters are unknown. To this end, we present a theorem
establishing useful equivalent forms of the WSGM; these
alternative equivalent forms give rise to a practically appli-
cable approximation to the WSGM.

To establish the notation, let the target be a mixture dis-
tribution given by

π(x) ∝
J∑

j=1

h j (x) =
J∑

j=1

w j g j (x) (11)

where g j (x) is a normalised target density. Then, set

πβ(x) ∝
J∑

j=1

f j (x, β) =
J∑

j=1

W( j,β)

[g j (x)]β∫ [g j (x)]βdx . (12)
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Then, we have the following result, proved in Appendix.

Theorem 1 (WSGM Equivalences) Consider the setting of
(11) and (12) where the mixture components consist of mul-
tivariate Gaussian distributions i.e. g j (x) = φ(x;μ j ,Σ j ).
Then, ∀ j ∈ 1, . . . , J

(a) [Standard, non-weight-preserving tempering] If f j (x, β)

= [h j (x)]β then

W( j,β) ∝ w
β
j |Σ j | 1−β

2 .

(b) [Weight-preserving tempering, version #1] Denoting
∇ j = ∇ log h j (x) and ∇2

j = ∇2 log h j (x); if f j (x, β)

takes the form

h j (x) exp

{(
1 − β

2

)
(∇ j (x))

T
[
∇2

j (x)
]−1 ∇ j (x)

}

then W( j,β) ∝ w j .
(c) [Weight-preserving tempering, version #2]

If

f j (x, β) = h j (x)
βh j (μ j )

(1−β)

then W( j,β) ∝ w j .

Remark 1 In Theorem 1, statement (b) shows that second-
order gradient information of the h j ’s can be used to preserve
the component weight in this setting.

Remark 2 Statement (c) extends statement (b) to no longer
require the gradient information about the h j but simply the
mode/mean point μ j . Essentially, this shows that by appro-
priately rescaling according to the height of the component as
the components are “powered up,” then component weights
are preserved in this setting.

Remark3Asimple calculation shows that statement (c) holds
for amore generalmixture settingwhen all components of the
mixture share a common distribution but different location
and scale parameters.

3.3 Hessian adjusted tempering

The results of Theorem 1 are derived under the impractical
setting that the components are all known and that π(·) is
indeed a mixture target. One would like to exploit the results
of (b) and (c) from Theorem 1 to aid mixing in a practical
setting where the target form is unknown but may be well
approximated by a mixture.

Suppose herein that the modes of the multimodal target
of interest, π(·), are well separated. Thus, an approximating
mixture of the formgiven in (11)would approximately satisfy

π(x) ∝ hM (x)

where M = sup j

{
h j (x)

}
. Hence, it is tempting to apply a

version of Theorem 1(b) to π(·) directly as opposed to the
h j . So at inverse temperature β, the point-wise target would
be proportional to

π(x) exp

{(
1 − β

2

)
(∇π (x))T

[
∇2

π (x)
]−1 ∇π (x)

}
.

where ∇π = ∇ logπ(x) and ∇2
π = ∇2 (logπ(x)). This only

uses point-wise gradient information up to second order. At
many locations in the state space, provided that β is at a tem-
perature level that is sufficiently cool that the tail overlap is
insignificant, and if the target was indeed a Gaussian mix-
ture, then this approach would give almost exactly the same
evaluations as πβ(·) from (12) in the setting of (b). However,
at locations between modes when the Hessian of log(π(x))
is positive semi-definite, this target behaves very badly, with
explosion points that make it improper.

Instead, under the setting of well-separated modes, one
can appeal instead to the weight-preserving characterisation
in Theorem 1(c). Assume that one can assign each location
in the state space to a “mode point” via some function x →
μx,β , with a corresponding tempered target given by

πβ(x) ∝ π(x)βπ(μx,β)1−β.

Note the mode assignment function’s dependence on β. This
can be understood to be necessary by appealing to Fig. 2
where it is clear that the narrow mode in the WSGM target
has a “basin of attraction” that expands as the temperature
increases.

Definition 2 (Basic Hessian Adjusted Tempering (BHAT)
Target) For a target distribution π(·) on R

d with a corre-
sponding “mode point assigning function”μx,β : Rd → R

d ;
the BHAT target at inverse temperature level β ∈ (0,∞) is
defined as

π BH
β (x) ∝ π(x)βπ(μx,β)1−β. (13)

However, in this basic form there is an issuewith this target
distribution at hot temperatures when β → 0. The problem
is that it leaves discontinuities that can grow exponentially
large, and this can make the hot state temperature level mix-
ing exponentially slow if using standardMCMCmethods for
the within-temperature moves.

This problemcanbemitigated if one assumesmore knowl-
edge about the target distribution. Suppose that the mode

123



Statistics and Computing

points are known and so there is a collection of K mode
points M = {μ1, . . . , μK }. This assumption seems quite
strong but in general if one cannot find mode points, then
this is essentially saying that one cannot find the basins of
attraction and thus the desire to obtain the modal relative
masses (as MCMC is trying to do) must be relatively impos-
sible. Indeed, being able to find mode points either prior to
or online in the run of the algorithm is possible, e.g. Tjelme-
land and Hegstad (2001), Behrens (2008) and Tawn et al.
(2018). Furthermore, assume that the target, π(·), is C2 in a
neighbourhood of the K mode locations and so there is an
associated collection of positive definite covariance matrices
S = {Σ1, . . . , ΣK }whereΣ j = − (∇2 logπ(μ j )

)−1
. From

this and knowing the evaluations of π(·) at the mode points,
one can approximate the weights in the regions to attain a
collection Ŵ = {ŵ1, . . . , ŵK } where

ŵ j = π(μ j )|Σ j |1/2
∑K

k=1 π(μk)|Σk |1/2
With φ(·|μ j ,Σ j ) denoting the pdf of a N (μ j ,Σ j ), we

define the following modal assignment function motivated
by the WSGM:

Definition 3 (WSGM mode assignment function) With col-
lections M , S and Ŵ specified above then for a location
x ∈ R

d and inverse temperature β define the WSGM mode
assignment function as

A(x, β) = arg max
j

{
ŵ jφ

(
x |μ j ,

Σ j

β

)}
. (14)

Under the assumption that there are collections M , S and
Ŵ that have either been found through prior optimisation or
through an adaptive online approach,wedefine the following.

Definition 4 (Hessian Adjusted Tempering (HAT) Target)
For a target distributionπ(·) onRd with collectionsM , S and
Ŵ defined above along with the associated mode assignment
function given in (14), theHessian adjusted tempering (HAT)
target is defined as

πH
β (x) ∝

{
π(x)βπ(μA(x,β))

1−β if A(x, β) = A(x, 1)

G(x, β) if A(x, β) �= A(x, 1)

(15)

where with Â := A(x, β)

G(x, β) =
π(μ Â)

(
(2π)dΣ Â

)1/2
φ
(
x |μ Â,

Σ Â
β

)

βd/2 .
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Fig. 3 For the same bimodal Gaussian target from Fig. 2, here is a
comparison of the HAT vs WSGM targets at inverse temperatures β =
0.05 and β = 0.005, respectively. Note they are almost identical at the
colder temperature, but they do differ slightly in the interval (−25, 10) at
the hotter temperature where the “G” function is allowing the footprint
of the narrow mode to expand

Essentially, the function “G” specifies the target distribu-
tionwhen the chain’s location, x , is in a part of the state space
where the narrower modes expand their basins of attraction
as the temperature gets hotter. Both the choice of G and the
mode assignment function used in Definition 4 are somewhat
canonical to the Gaussian mixture setting. With the same
assignment function specified in Definition 3, an alternative
and seemingly robust “G” that one could use is given by

G(x, β) = π(x, 1, A)

+
(

2P(A(x, β))

P(A(x, β)) + P(A(x, 1))
− 1

)

×[π(x, β, A) − π(x, 1, A)]

where π(x, β, A) = π(x)βπ(μA(x,β))
1−β and P( j) =

ŵ jφ
(
x |μ j ,

Σ j
β

)
.

With either of the suggested forms of the function G,
then under the assumption that the target is continuous and
bounded on R

d and that for all β ∈ (0,∞),

∫

X
πβ(x)dx < ∞,

then πH
β (x) is a well-defined probability density, i.e. Defini-

tion 4 makes sense.
For a bimodal Gaussianmixture example, Fig. 3 compares

the HAT target relative to theWSGM target, showing that the
HAT targets are a very good approximation to the WSGM
targets, even at the hotter temperature levels.

We propose to use the HAT targets in place of the power-
based targets for the tempering algorithms given in Sect. 2.
We thus define the following algorithms, which are explored
in the following sections.

Definition 5 (HessianAdjustedSimulatedTempering (HAST)
Algorithm) The HAST algorithm is an implementation of the
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ST algorithm (Sect. 2, Algorithm 1) where the target distri-
bution at inverse-temperature level β is given by πH

β (·) from
Definition 4.

Definition 6 (Hessian Adjusted (Parallel) Tempering (HAT)
Algorithm) The HAT algorithm is an implementation of the
PT algorithm (Sect. 2, Algorithm 2) where the target distri-
bution at inverse-temperature level β is given by πH

β (·) from
Definition 4.

4 Simulation studies

4.1 WSGMAlgorithm simulation study

We begin by comparing the performances of a ST algo-
rithm targeting both the power-based and WSGM targets
for a simple but challenging bimodal Gaussian mixture tar-
get example. The example will illustrate that the traditional
ST algorithm, using power-based targets, struggles to mix
effectively through the temperature levels due to a bottleneck
effect caused by the lack of regional weight preservation.

The example considered is the ten-dimensional target dis-
tribution given by the bimodal Gaussian mixture

π(x) = w1φ(μ1,Σ1)(x) + w2φ(μ2,Σ2)(x) (16)

where w1 = 0.2, w2 = 0.8, μ1 = (−10,−10, . . . ,−10),
μ2 = (10, 10, . . . , 10), Σ1 = 9I10 and Σ2 = I10. When
power-based tempering is used, then mode 1 accounts for
only 20% of the mass at the cold level, but at the hotter
temperature levels becomes the dominant mode containing
almost all the mass.

For both runs, the same geometric temperature schedule
was used:

Δ =
{
1, 0.32, 0.322, . . . , 0.326

}
.

This geometric schedule is justified by Corollary 1 of Tawn
andRoberts (2018), which suggests this is an optimal setup in
the case of a regionally weight-preserved PT setting. Indeed,
this schedule induces a swap move acceptance rates around
0.22 for the WSGM algorithm, close to the suggested 0.234
optimal value.

This temperature schedule gave swap acceptance rates of
approximately 0.23 between all levels of the power-based
ST algorithm except for the coldest level swap where this
degenerated to 0.17. That shows that the power-based ST
algorithm was set up essentially optimally according to the
results in Atchadé et al. (2011).

In order to ensure that the within-mode mixing is not
influencing the temperature spacemixing, a localmodal inde-
pendence sampler was used for the within-modemoves. This
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Fig. 4 Top: trace plots of the functional of the simulated tempering
chains given in (18). On the left is the version using the WSGM tar-
gets, which mixes well through the temperature schedule and finds both
modal regions. On the right is the version using the standard power-
based targets, which fails to ever find one of the modes. Bottom: trace
plots of x̄t in each of the cases, respectively

essentially means that once a mode has been found, the mix-
ing is infinitely fast. We use the modal assignment function
μx,β which specifies that the location x is in mode 1 if x̄ < 0
and inmode2otherwise.Then, thewithin-moveproposal dis-
tribution for amove at inverse temperature level β is given by

qβ(x, y) = φ(
μ1,

Σ1
β

)(y)1x̄<0 + φ(
μ2,

Σ2
β

)(y)1x̄≥0, (17)

where φμ,Σ(.) is the density function of a Gaussian random
variable with mean μ and variance matrix Σ .

Figure 4 plots a functional of the inverse temperature at
each iteration of the algorithm. The functional is

h(βt , xt ) :=
log

(
βt

βmin

)

log
(

1
βmin

) sgn (x̄t ) (18)

where sgn(.) is the usual sign function and βmin is the min-
imum of the inverse temperatures. The significance of this
functional will become evident from the results of the core
theoretical contributions made in this paper in Theorems 2
and 3 in Sect. 5. Essentially, it is taking a transformation of
the current inverse temperature at iteration t of the Markov
chain, such that when βt = 1, the magnitude of h is 1 and
when the temperature is at its hottest level, i.e. βt = βmin,
h is zero. Furthermore, in this example, the sign of x̄t is a
reasonable proxy to identify the mode that the chain is con-
tained in with a negative value suggesting the chain is in the
mode centred on μ1 and μ2 otherwise.

Figure 4 clearly illustrates that the hot state modal weight
inconsistency leads the chain down a poor trajectory since
at hot temperatures nearly all the mass is in modal region 1.
This results in the chain never reaching the other mode in the
entire (finite) run of the algorithm. Indeed, the trace plots in
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Fig. 4 show that the chain is effectively trapped in mode 1,
which although it only has 20% of the mass in the cold state,
is completely dominant at the hotter states.

4.2 Simulation study for HAT

To demonstrate the capabilities of the HAT algorithm in a
non-Gaussian setting where the modes exhibit skew, a five-
dimensional four-mode skew normal mixture target example
is presented. Albeit a mixture, this example can be seen to
give similar target distribution geometries to non-mixture set-
tings due to the skew nature of the modes.

π(x) ∝
4∑

k=1

wk

5∏

i=1

f (xi |μk, σk, α) (19)

where the skew normal density is given by

f (z|μ, σ, α) = 2

σ
φ

(
z − μ

σ

)
Φ

(
α(z − μ)

σ

)

and where w1 = w2 = w3 = w4 = 0.25, μ1 = −15,
μ2 = 15, μ3 = 45, μ4 = −45, σ1 = 1, σ2 = 1, σ3 = 3,
σ4 = 3 and α = 2.

As will be seen in the forthcoming simulation results, the
imbalance of scales within each modal region ensures that
this is a very challenging problem for the PT algorithm.

Since this target fits into the setting of Corollary 1 of
Tawn and Roberts (2018), a geometric inverse-temperature
schedule is approximately optimal for the HAT target in this
setting. Indeed, Tawn and Roberts (2018) suggest that the
geometric ratio should be tuned so that the acceptance rate
for swapmoves between consecutive temperatures is approx-
imately 0.234. In this case, eight tempering levels were used
to obtain effective mixing; these were geometrically spaced
and given by {1, 0.31, 0.312, . . . , 0.317}, were found to be
approximately optimal and gave an average of 0.22 for the
swaps between consecutive levels for the HAT algorithm.

Using this temperature schedule along with appropriately
tuned RWMproposals for the within-temperature moves, ten
runs of both the PT and HAT algorithms were performed. In
each individual run, each temperature marginal was updated
withm = 5 RWMproposals followed by a temperature swap
move proposal and this was repeated with s = 100,000
sweeps. This results in a sample output of 600,001 of the
cold state chain prior to any burn-in removal. Herein, for this
example, denote N = 600,001.

As expected, the scale imbalance between the modes
resulted in the PT algorithm performing poorly and with
significant bias in the sample output. In contrast, the HAT
approach was highly successful in converging relatively
rapidly to the target distribution, exhibiting far more frequent
intermodal jumps at the cold state.
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Fig. 5 Two trace plots of the first marginal component cold state chain
targeting the distribution in (19) using the HAT and PT algorithms,
respectively. Note the HAT algorithm run illustrates a chain that is
performing rapid exploration between all four modes, whereas the PT
algorithm exhibits significant sticky patches
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Fig. 6 Running estimate of Pπ (−30 < X1
i < 0), i.e. Ŵ k

1 given in (20),
for ten runs of the PT (left) and HAT (right) algorithms. The horizontal
black line at the level 0.25 represents the true probability that one aims
to target in this case. In both cases, a burn-in of 10,000 iterations was
removed. Observe the lack of convergence of the weight estimates for
the PT runs compared to the relatively impressive estimates from the
HAT runs

Figure 5 shows one representative example of a run of the
PT andHAT algorithms by plotting the first component of the
five-dimensional marginal chain at the coldest target state. It
illustrates the impressive intermodal mixing of HAT across
all four modal regions as opposed to the very sticky mixing
exhibited by the PT algorithm.

Figure 6 shows the running approximation of Pπ (−30 <

X1
i < 0) (which is approximately theweight of the firstmode

i.e.w1 = 0.25) after the kth iteration of the cold state chains,
after removing a burn-in period of 10,000 initial iterations,
for the ten runs of the PT and HAT runs, respectively. The
approximation after iteration k ≤ N is given by

Ŵ k
1 := 1

k − 10000

k∑

i=10001

1(−30<X1
i <0

) (20)
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Table 1 End point estimates, Ŵ N
1 , of Pπ (−30 < X1

i < 0) from the
ten runs of the PT and HAT algorithms. The true value of 0.25 appears
to be well approximated by HAT but not by PT

PT 0.23 0.36 0.19 0.31 0.10 0.12 0.18
0.39 0.51 0

HAT 0.27 0.24 0.26 0.22 0.22 0.27 0.23

0.28 0.25 0.26

Table 2 Using the ten runs of each algorithm in a batch-means approach
to estimate the Monte Carlo variance of the pooled estimator Ŵ 10N

1 i.e.

SD(Ŵ N
1 ). Also displayed is the average run time (RT, measured in

seconds) of a single one of the ten repeated runs for both methods,
respectively

Ŵ 10N
1 ŜD(Ŵ N

1 ) ˆSD(Ŵ 10N
1 ) RT (secs)

PT 0.288 0.187 0.0593 217

HAT 0.249 0.019 0.0063 451

where X1
i is the location of the first component of the five-

dimensional chain at the coldest temperature level after the
i th iteration. This figure indicates that the PT algorithm fails
to provide a stable estimate for Pπ (−30 < X1

i < 0) with the
running weight approximations far from stable at the end of
the runs; in stark contrast, the HAT algorithm exhibits very
stable performance in this case. In fact, the final estimates
for Ŵ N

1 are given in Table 1.
Table 2 presents the results of using the ten runs of each

algorithm in a batch-means approach to estimate the Monte
Carlo variance of the estimator of Ŵ N

1 . The results in Table 2
show that the Monte Carlo error is approximately a factor of
10 higher for the PT algorithm than the HAT approach.

However, it is also important to analyse this inferential
gain jointly with the increase in computational cost. Table 2
also shows that the average run time for the tenHAT runs was
451s which is a little more than two times slower than the
average run time of the PT algorithm (217s) in this example.
The major extra expense is due to the cost of computing
the WSGM mode assignment function in (14) at both the
cold and current temperature of interest at each evaluation of
the HAT target. Anyhow, this is very promising since for a
little more than twice the computational cost, the inferential
accuracy appears to be ten times better in this instance.

5 Diffusion limit and computational
complexity

In this section, we provide some theoretical analysis for our
algorithm. We shall prove in Theorems 2 and 3 that as the
dimension goes to infinity, a simplified and speeded-up ver-
sion of ourweight-preserving simulated tempering algorithm

(i.e. theHASTAlgorithm fromDefinition 5, equivalent to the
ST Algorithm 1 with the adjusted target from Definition 4)
converges to a certain specific diffusion limit. This limit will
allow us to draw some conclusions about the computational
complexity of our algorithm.

5.1 Assumptions

We assume for simplicity (though see below) that our target
density π is a mixture of form (11) with just J = 2modes, of
weightsw1 = p andw2 = 1−p, respectively,with eachmix-
ture component a special i.i.d. product g j (x) = ∏d

i=1 f j (xi )
as in (4). We further assume that a weight-preserving trans-
formation (perhaps inspired by Theorem 1(b) or (c)) has
already been done, so that

πβ(x) ∝ p
[g1(x)]β∫ [g1(x)]βdx + (1 − p)

[g2(x)]β∫ [g2(x)]βdx

≡ pgβ
1 (x) + (1 − p)gβ

2 (x)

for each β. We consider a simplified version of the weight-
preserving process, inwhich the chain alwaysmixes immedi-
ately within each mode, but the chain can only jump between
modes when at the hottest temperature βmin, at which point it
jumps to one of the twomodeswith probabilities p and 1− p,
respectively. Let I denote the indicator of which mode the
process is in, taking value 1 or 2.

We shall sometimes concentrate on theExponential Power
Family special case in which each of the two mixture com-
ponent factors is of the form f j (x) ∝ e−λ j |x |r j for some
λ j , r j > 0. This includes the Gaussian case for which
r1 = r2 = 2 and λ j = 1/σ 2

j . (Note that the HAT target
in (15) requires the existence of second derivatives about the
mode points, corresponding to r j ≥ 2.)

As in Atchadé et al. (2011) and Roberts and Rosenthal
(2014), following Predescu et al. (2004) and Kone and Kofke
(2005), we assume that the inverse temperatures are given by
1 = β

(d)
0 , β

(d)
1 , . . . , β

(d)
k(d) ≈ βmin, with

βi = βi−1 − �(βi−1)/d
1/2 (21)

for some fixed C1 function �. In many cases, including the
Exponential Power Family case, the optimal choice of � is
�(β) = β�0 for a constant �0

.= 2.38.
We let β

(d)
t be the inverse temperature at time t for the

d-dimensional process. To study weak convergence, we let
β

(d)
N (dt) be a continuous-time version of the β

(d)
t process,

speeded up by a factor of d, where {N (t)} is an independent
standard rate 1 Poisson process. To combine the two modes
into one single process, we further augment this process by
multiplying it by −1 when the algorithm’s state is closer to
the secondmode, while leaving it positive (unchanged) when
state is closer to the first mode. Thus, define
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X (d)
t = (3 − 2I ) β

(d)
N (dt). (22)

5.2 Main results

Our first diffusion limit result (proved in Appendix), follow-
ing Roberts and Rosenthal (2014), states that when we are
at an inverse temperature greater than βmin, the inverse tem-
perature process behaves identically to the case where there
is only one mode (i.e. J = 1).

Theorem 2 Assume the target π is of form (11), with J = 2
modes of weights w1 = p and w2 = 1 − p, with inverse
weights chosen as in (21). Then, up until the first time the pro-
cess X (d) hits ±βmin, as d → ∞, {X (d)

t } converges weakly
to a fixed diffusion process X given by (22).

Theorem 2 describes what happens away from βmin. How-
ever, it says nothing about what happens at βmin. Moreover,
its state space [−1,−βmin) ∪ (βmin, 1] is not connected, and
we have not even properly defined h at ±βmin. To resolve
these issues, we define

h(x) =

⎧
⎪⎨

⎪⎩

∫ x
βmin

1
�(u)

du, when x > 0

− ∫ −x
βmin

1
�(u)

du, when x < 0

0, when x = 0

and set Ht = h(Xt ), thus making the process H continuous
at 0.

Remark 1 The process H leaves constant densities locally
invariant, G̃∗g(v) = 0 for all v �= 0 where G̃∗ is the adjoint
of the infinitesimal generator of H , as will be shown in
Appendix. This suggests that the density of the invariant dis-
tribution of H (if it exists) should be piecewise uniform; i.e.
it should be constant for v > 0 and also constant for v < 0
though these two constants might not be equal.

To make further progress, we require a proportionality
condition. Namely,we assume that the quantities correspond-
ing to I (β) = Varπβ

(
log f (x)

)
are proportional to each

other in the two modes. More precisely, we extend the defi-
nition of I to I (β) = Var

x∼ f β
1
(log f1(x)) for β > 0 (corre-

sponding to the firstmode), and I (β) = Var
x∼ f |β|

2
(log f2(x))

for β < 0 (corresponding to the second mode), and assume
there is a fixed function I0 : R+ → R+ and positive con-
stants r1 and r2 such that we have I (β) = I0(β)/r1 for β > 0
(in the first mode), while I (β) = I0(|β|)/r2 for β < 0 (in the
second mode). For example, it follows from Section 2.4 of
Atchadé et al. (2011) that in the Exponential Power Family
case, I (β) = 1/r1β2 for β > 0 and I (β) = 1/r2β2 for β <

0, so that this proportionality condition holds in that case.
Corresponding to this, we choose the inverse-temperature

spacing function as follows (following Atchadé et al. 2011
and Roberts and Rosenthal 2014):

�(β) = I−1/2
0 (β) �0 (23)

for some fixed constant �0 > 0.
To state our next result, we require the notion of skew

Brownianmotion, a generalisationof usualBrownianmotion.
Informally, this is a process that behaves just like a Brow-
nian motion, except that the sign of each excursion from 0
is chosen using an independent Bernoulli random variable;
for further details and constructions and discussion, see, e.g.
Lejay (2006). We also require the function

z(h) = h

[
2Φ

( −�0

2
√
r(h)

)]−1/2

.

where r(h) = r1 for h > 0 and r(h) = r2 for h < 0. We
then have the following result (also proved in Appendix).

Theorem 3 Under the set-up and assumptions of Theo-
rem 2, assuming the above proportionality condition and the
choice (23), then as d → ∞, the process {X (d)

t } converges
weakly in the Skorokhod topology to a limit process X. Fur-
thermore, the limit process has the property that if

Zt = z
(
h(Xt )

)
,

then Z is skew Brownian motion B∗
t with reflection at

(3 − 2i)

[
2Φ

( −�0

2
√
ri

)]−1/2 ∫ 1

βmin

1

�(u)
du, i = 1, 2.

(24)

Remark 2 It follows from the proof of Theorem 3 that the
specific version of skew Brownian motion B∗

t that arises in
the limit is one with excursion weights proportional to

a = p

[
2Φ

( −�0

2
√
r1

)]1/2
and b = (1 − p)

[
2Φ

( −�0

2
√
r2

)]1/2
.

That means that the stationary density for B∗
t on the positive

and negative values is proportional to a and b, respectively.
This might seem surprising since the limiting weights of the
modes should be equal to p and 1 − p, not proportional to
a and b (unless r1 = r2). The explanation is that the lengths
of the positive and negative parts of the domain are given by[
2Φ

( −�0
2
√
r1

)]1/2
and

[
2Φ

( −�0
2
√
r2

)]1/2
, respectively. Hence,

the total stationary mass of the positive and negative parts—
and hence also the limiting modes weights—is still p and
1 − p as they should be.

5.3 Complexity order

Theorems 2 and 3 have implications for the computational
complexity of our algorithm.
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In Theorem 2, the limiting diffusion process Ht is a fixed
process, not depending on dimension except through the
value of βmin. It follows that if βmin is kept fixed, then Ht

reaches 0 (and hence mixes modes) in time O(1). Since Ht

is derived (via Xt ) from the βt process speeded up by a fac-
tor of d, it thus follows that for fixed βmin, βt reaches βmin

(and hence mixes modes) in time O(d). So, if βmin is kept
fixed, then the mixing time of the weight-preserving temper-
ing algorithm is O(d), which is very fast. However, this does
not take into account the dependence on βmin, which might
also change as a function of d.

Theorem 3 allows for control of the dependence of mix-
ing time on the values of βmin. The limiting skew Brownian
motion process B∗

t is a fixed process, not depending on
dimension nor on βmin, with range given by the reflection
points in (24). It follows that Zt reaches 0 (and hence mixes
modes) in time of order the square of the total length of the
interval, i.e. of order
(

2∑

i=1

[
2Φ

( −�0

2
√
ri

)]−1/2 ∫ 1

βmin

1

�(u)
du

)2

In theExponential PowerFamily case, this is easily computed
to be O

(
d [logβmin]2

)
.

This raises the question of how large βmin needs to be, as
a function of dimension d. If the proposal scaling is optimal
for within each mode at the cold temperature, then the pro-
posal scaling is O(d−1/2). Then, at an inverse temperature
β, the proposal scaling is O((βd)−1/2). Hence, at an inverse
temperature β, the probability of jumping from one mode
to the other (a distance O(

√
d) away) is roughly of order

e−βd2 . This is exponentially small unlessβ = O(1/d2). This
indicates that for our algorithm to perform well, we need to
choose βmin = O(1/d2). With this choice, the mixing time
order becomes

(
2∑

i=1

[
2Φ

( −�0

2
√
ri

)]−1/2 ∫ 1

1/d2

1

�(u)
du

)2

In the Exponential Power Family case, this corresponds to
O
(
d [log d]2). That is, for the inverse-temperature process to

hit βmin and hence mix modes, it takes O
(
d [log d]2) itera-

tions. This is a fairly modest complexity order and compares
very favourably to the exponentially large convergence times
which arise for traditional simulated tempering as discussed
in Sect. 2.2.

5.4 More than twomodes

Finally, we note that for simplicity, the above analysis was all
done for just two modes. However, a similar analysis works
more generally. Indeed, suppose now that we have k modes,
of general weights p1, p2, . . . , pk ≥ 0 with

∑
i pi = 1.

Then, when β gets to βmin, the process chooses one of the
k modes with probability pi . This corresponds to {Yt } being
replaced by a Brownian motion not on [−1, 1], but rather
on a “star” shape with k different length-1 line segments all
meeting at the origin (corresponding, in the original scaling,
toβmin), where each time theBrownianmotion hits the origin
it chooses one of the k line segments with probability pi
each. This process is called Walsh’s Brownian motion, see
e.g. Barlow et al. (1989). (The case k = 2 but p1 �= 1/2
corresponds to skew Brownian motion as above.) For this
generalised process, a theorem similar to Theorem 2 can be
then stated and proved by similar methods, leading to the
same complexity bound of O

(
d [log d]2) iterations in the

multimodal case as well.

6 Conclusion and further work

This article has introduced the HAT algorithm tomitigate the
lack of regional weight preservation in standard power-based
tempered targets. Our simulation studies show promising
mixing results, and our theorems indicate the mixing times
can become polynomial rather than exponential functions
of the dimension d, and indeed of time O(d[log d]2) under
appropriate assumptions.

Various questions remain to make our HAT approach
more practically applicable. The “modal assignment func-
tion” needs to be specified in an appropriate way, and more
exploration into the robustness of the current assignment
mechanism is needed to understand its performance on heav-
ier and lighter tailed distributions. The suggested HAT target
assumes knowledge of the mode points which typically one
will not have to begin with and one would rely on effective
optimisation methods to seek these out either during or prior
to the run of the algorithm. Indeed, this has been partially
explored by the authors in Tawn et al. (2018). The perfor-
mance of HAT is heavily reliant on the mixing at the hottest
temperature level; the use of RWM here can be problematic
forHATwhere themode heights of the dispersemodes can be
far lower than the narrower modes. As such, more advanced
sampling schemes such as discretised tempered Langevin
could give accelerated mixing at the hot state, the effects of
which would be transferred to an improvement in the mixing
at the coldest state.

In the theoretical analysis of Sect. 5, the spacing between
consecutive inverse-temperature levels was taken to be
O(d−1/2) to induce a non-trivial diffusion limit. However,
this result required strong assumptions. Accompanying work
in Tawn and Roberts (2018) suggests that for the HAT algo-
rithmundermore general conditions, the consecutive optimal
spacing should still be O(d−1/2), with an associated optimal
acceptance rate in the interval [0, 0.234].

123



Statistics and Computing

Funding Funding was provided by Engineering and Physical Sci-
ences Research Council (Grant No. EP/K014463/1) and by NSERC
of Canada.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

In this appendix, we prove the theorems stated in the paper.

Proof of Theorem 1

Herein, assume the mixture distribution setting of (11) and
(12) where the mixture components consist of multivariate
Gaussian distribution, i.e. g j (x) = φ(x;μ j ,Σ j ). We prove
each of the three parts of Theorem 1 in turn.

Proof of Theorem 1(a)] Recall that h j (x) = w jφ(x;μ j ,Σ j )

where ∃C ∈ R such that C
∑J

j=1 w j = 1. Hence, taking

f j (x, β) = [h j (x)]β gives

f j (x, β) = w
β
j φ(x;μ j ,Σ j )

β

= w
β
j

⎡

⎣
(
(2π)d |Σ j |

) 1−β
2

βd/2

⎤

⎦φ

(
x;μ j ,

Σ j

β

)

∝ w
β
j |Σ j | 1−β

2 φ

(
x;μ j ,

Σ j

β

)

��
Proof of Theorem 1(b) Recall the result of Theorem 1(a). To
adjust for the weight discrepancy from the cold state target,
a multiplicative adjustment factor, α j (x), is used such that

f j (x, β) = h j (x)
βα j (x, β)

where α j (x, β) =
(
w

β
j |Σ j | 1−β

2

)−1
. An identical argument

to Theorem 1(a) shows that this immediately givesW( j,β) ∝
w j .

In a Gaussian setting, up to a proportionality constant

w j ∝ h j (x)

[
(2π)

d
2 |Σ j |

1
2 exp

{
1

2
(x − μ j )

TΣ−1
j (x − μ j )

}]

(25)

and at any point x ∈ R
d

∇ log h j (x) = −Σ−1
j (x − μ j ) (26)

∇2 log h j (x) = −Σ−1
j . (27)

Substituting these gradient terms (26) and (27) into (25) and
then using this form of (25) to create the adjustment factor

α j (x, β) =
(
w

β
j |Σ j | 1−β

2

)−1
complete the proof. ��

Proof of Theorem 1(c) Since h j (x) = w jφ(x;μ j ,Σ j ) then

f j (x, β) = h j (x)
βh j (μ j )

(1−β)

= w jφ(x;μ j ,Σ j )
βφ(μ j ;μ j ,Σ j )

(1−β)

= w j

βd/2 φ

(
x;μ j ,

Σ j

β

)

and so W( j,β) ∝ w j . ��
Remark 3 It is possible to extend the weight adjusted target
result of Theorem 1(c) to a setting where the target consists
of a mixture of a general but common distribution, with each
component having a different shape and scale factor; we plan
to pursue this result elsewhere.

Proof of Theorem 2

Since mixing between modes is only possible at βmin, the
dynamicswill be identical to the single-mode case (J = 1) as
covered inRoberts andRosenthal (2014). It therefore follows
directly from Theorem 6 of Roberts and Rosenthal (2014)
that as d → ∞, the process {Xt } converges weakly, at least
on Xt > 0, to a diffusion limit {Xt }t≥0 satisfying

dXt =
[

2�2(Xt ) Φ

(
−�(Xt )I 1/2(Xt )

2

)]1/2
dBt

+
[
�(Xt ) �′(Xt ) Φ

(
−I 1/2(Xt )�(Xt )

2

)

− �2(Xt )

(
�(Xt )I 1/2(Xt )

2

)′
φ

(
−I 1/2(Xt )�(Xt )

2

)]
dt,

where I (β) = Var
x∼ f β

1
(log f1(x)). If we extend the defi-

nition of I to I (β) = Var
x∼ f β

1
(log f1(x)) for β > 0 and

I (β) = Var
x∼ f |β|

2
(log f2(x)) for β < 0, so that positive

values correspond to the firstmodewhile negative values cor-
respond to the second mode, then (28) also holds for Xt < 0,
except with the sign of the drift reversed.

Proof of Remark 1

We note that for x > 0 (with exactly analogous results for
x < 0), h′(x) = �(x)−1, and h′′(x) = −�′(x)�(x)−2. So, if
we set Ht = h(Xt ), then we compute by Ito’s formula that

dHt = h′(Xt )dXt + 1

2
h′′(Xt )d〈X〉t

= �(Xt )
−1dXt − 1

2
�′(Xt )�(Xt )

−2d〈X〉t
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= �(Xt )
−1

[

2�2(Xt )Φ

(
−�(Xt )I 1/2(Xt )

2

)]1/2
dBt

+ �(Xt )
−1
[
�(Xt )�

′(Xt )Φ

(
−I 1/2(Xt )�(Xt )

2

)

− �2(Xt )

(
�(Xt )I 1/2(Xt )

2

)′
φ

(
−I 1/2(Xt )�(Xt )

2

)]
dt

− 1

2
�′(Xt )�(Xt )

−2

[

2�2(Xt )Φ

(
−�(Xt )I 1/2(Xt )

2

)]

dt

=
[

2Φ

(
−�(Xt )I 1/2(Xt )

2

)]1/2
dBt

+
[
�′(Xt ) Φ

(
−I 1/2(Xt )�(Xt )

2

)

− �(Xt )

(
�(Xt )I 1/2(Xt )

2

)′
φ

(
−I 1/2(Xt )�(Xt )

2

)]
dt

− 1

2
�′(Xt )

[

2Φ

(
−�(Xt )I 1/2(Xt )

2

)]

dt

=
[

2Φ

(
−�(Xt )I 1/2(Xt )

2

)]1/2
dBt

− �(Xt )

(
�(Xt )I 1/2(Xt )

2

)′
φ

(
−I 1/2(Xt )�(Xt )

2

)

dt

=
[

2Φ

(
−�(Xt )I 1/2(Xt )

2

)]1/2
dBt

+ �(Xt )

[
Φ

(
−I 1/2(Xt )�(Xt )

2

)]′
dt (28)

Rewriting everything in terms of Ht = h(Xt ), this becomes

dHt =
[

2Φ

(
−�(h−1(Ht ))I 1/2(h−1(Ht ))

2

)]1/2
dBt

+ �(h−1(Ht ))

[

Φ

(
−I 1/2(h−1(Ht ))�(h−1(Ht ))

2

)]′
dt .

(29)

Now, in general, a diffusion of the form dHt = σ(Ht )dBt +
μ(Ht )dt has locally invariant distribution π provided that
1
2 (logπ)′σ 2+σσ ′ = μ. In particular, it has a uniform locally
invariant distribution , i.e. with π constant, provided that
μ = σσ ′, i.e. that 2μ = (σ 2)′. In this specific case, we
verify that

(σ 2)′ = d

dH

[
2Φ

(−�(h−1(H))I 1/2(h−1(H))

2

)]

=
(
dH

dX

)−1 d

dX

[
2Φ

(−�(X)I 1/2(X)

2

)]

=
(
�(X)−1

)−1
[
2Φ

(−�(X)I 1/2(X)

2

)]′

which is indeed equal to 2μ since in the above equation

μ = �(X)

[
Φ

(−I 1/2(X)�(X)

2

)]′
.

Therefore, H leaves constant densities locally invariant.

Proof of Theorem 3

We now assume that I (β) = I0(β)/r1 for β > 0, while
I (β) = I0(|β|)/r2 for β < 0, and that �(β) = I−1/2

0 (β) �0.
This makes �(x)I 1/2(x) = �0/

√
r1 for x > 0, and

�(x)I 1/2(x) = �0/
√
r2 for x < 0. In either case, �(x)I 1/2(x)

is constant, i.e. has derivative zero.That in turn collapses (28),
at least for Ht �= 0, into the simpler

dHt =
[
2Φ

( −�0

2
√
r(Ht )

)]1/2
dBt ,

where r(H) = r1 for H > 0 and r(H) = r2 for H < 0.
Finally, we set

Zt = Ht

[
2Φ

( −�0

2
√
r(Ht )

)]−1/2

.

That is, Zt is a version of Ht which is stretched by a piecewise
linear spatial function, which is linear on each of the positive
and negative values, respectively. It then follows immedi-
ately from the above that dZt = dBt , i.e. that Zt behaves
like Brownian motion on each of its two branches (positive
and negative). It remains only to prove that at Zt = 0, the
convergence still holds.

We complete the proof similarly to previous proofs of dif-
fusion limits of MCMC algorithms (e.g. Roberts et al. 1997;
Roberts and Rosenthal 1998; Bédard and Rosenthal 2008),
following the approach indicated in Chapter 4 of Ethier and
Kurtz (1986) (in particular Corollary 8.7 of that chapter),
by proving that the generator G(d) of the original process
under these combined transformations (i.e. jumping accord-
ing to a rate d Poisson process, then transformed by the h
function, and then stretched by the piecewise linear function)
converges uniformly to the generator G∗ of skew Brownian
motion, when applied to a core of functionals.

Let zmax = ∫ 1
βmin

�−1(u)×2Φ(−�0/(2
√
r1) and let zmin =

− ∫ 1
βmin

�−1(u) × 2Φ(−�0/(2
√
r2). We let D be the set of

all functions f : [−zmin, zmax] → R which are continu-
ous and twice continuously differentiable on [zmin, 0] and
also on [0, zmax], withmatching one-sided second derivatives
f ′′+(0) = f ′′−(0) and skewed one-sided first derivatives sat-

isfying a f ′+(0) = b f ′−(0) where a = p
[
2Φ

( −�0
2
√
r1

)]1/2
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and b = (1 − p)
[
2Φ

( −�0
2
√
r2

)]1/2
. Finally, we require that

f ′(zmax) = f ′(zmin) = 0 to describe the reflecting bound-
aries at the endpoints. Thus, C2 functions are not contained
in D due the enforced discontinuity of the first derivative
at 0, but e.g. f ∈ D if f (x) = x2 + ax1x<0 + bx1x>0.
In particular, D is dense (in the sup norm) in the set of all
C2[zmin, zmax] functions, so in the language of Ethier and
Kurtz (1986), D serves as a core of functions for which it
suffices to prove that the generators converge. Furthermore,
it follows from, e.g., Liggett (2010) and Exercise 1.23 of
Chapter VII of Revuz and Yor 2004) that the generator of
skewBrownianmotion (with excursion weights proportional
to a and b, respectively) satisfies that G∗ f (x) = 1

2 f ′′(0) for
all f ∈ D, using the convention that f ′′(0) represents the
common value f ′′+(0) = f ′′−(0).

Now, it follows from the previous discussion that for any
fixed f ∈ D,

lim
d→∞ sup

z∈[zmin,zmax]\{0}
|G(d) f (z) − G∗ f (z)| = 0. (30)

That is, the generators do converge uniformly to the G∗, as
required, at least for z �= 0, i.e. avoiding the mode-hopping
value βmin. To complete the proof, it suffices to prove that
(30) also holds at z = 0, i.e. to prove:

Lemma 1 We have that:

lim
d→∞G(d) f (0) = G∗ f (0) = 1

2
f ′′(0).

Proof Note first that if the original inverse-temperature pro-
cess proposes to move the inverse temperature from βmin to
βmin + �(βmin)d−1/2, then the Ht process proposes to move
from 0 to±d−1/2, and the Zt process proposes to move from

0 to ±d−1/2
[
2Φ

( −�0
2
√
r(±)

)]−1/2
. Furthermore, the Zt pro-

cess, like the Xt process, is sped up by a factor of d, which
multiplies its generator by d. Hence, we conclude that

G(d) f (0) = d

(

pα+

[

f

(

d−1/2
[
2Φ

( −�0

2
√
r1

)]−1/2
)

− f (0)

]

+ (1 − p)α−

[

f

(

d−1/2
[
2Φ

( −�0

2
√
r2

)]−1/2
)

− f (0)

])

,

where α+ is the acceptance probability for the original pro-
cess to accept a proposal to increase the inverse temperature
from βmin to βmin + �(βmin)d−1/2 in mode 1, and α− is the
acceptance probability for the same proposal in mode 2.

Next, note that the process Zt has expected squared jump-
ing distance equal to the square of its volatility, which is just
equal to 1.

On the other hand, the expected squared jumping distance
must be equal to the squared distance of its proposed move

times the acceptance probability. Hence, in mode 1, we must
have

1 =
([

2Φ

( −�0

2
√
r1

)]−1/2
)2

α+

whence

α+ = 2Φ

( −�0

2
√
r1

)

and similarly

α− = 2Φ

( −�0

2
√
r2

)
.

Then, taking a Taylor series expansion, we obtain that for
f ∈ D,

G(d) f (0) = d

(
pα+

[

f

(

d−1/2
[
2Φ

( −�0

2
√
r1

)]−1/2
)

− f (0)

]

+(1 − p)α−

[

f

(

−d−1/2
[
2Φ

( −�0

2
√
r2

)]−1/2
)

− f (0)

])

= dp

[
2Φ

( −�0

2
√
r1

)](

d−1/2
[
2Φ

( −�0

2
√
r1

)]−1/2
)

f ′+(0)

− 1

2
dp

[
2Φ

( −�0

2
√
r1

)](

d−1/2
[
2Φ

( −�0

2
√
r1

)]−1/2
)2

f ′′+(0)

+ O(dpα+d−3/2)

+
[
d(1 − p)

[
2Φ

( −�0

2
√
r2

)]

×
(

d−1/2
[
2Φ

( −�0

2
√
r2

)]−1/2
)

f ′−(0)

]

+
[
1

2
d(1 − p)

[
2Φ

( −�0

2
√
r2

)]

×
(

d−1/2
[
2Φ

( −�0

2
√
r2

)]−1/2
)2

f ′′−(0)

]

+ O(dpα+d−3/2)

= d1/2 p

[
2Φ

( −�0

2
√
r1

)]1/2
f ′+(0) + 1

2
p f ′′+(0)

− d1/2(1 − p)

[
2Φ

( −�0

2
√
r2

)]1/2
f ′−(0)

+ 1

2
(1 − p) f ′′−(0) + O(d−1/2).

Then, by definition of f ∈ D, the terms involving
f ′+(0) and f ′−(0) cancel, and the terms involving f ′′+(0)
and f ′′−(0) combine. Recalling the convention f ′′(0) =
f ′′+(0) = f ′′−(0), we obtain finally that

G(d) f (0) = 1

2
f ′′(0) + O(d−1/2)

so that

lim
d→∞G(d) f (0) = 1

2
f ′′(0) = G∗ f (0)

as claimed. ��
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