13 research outputs found

    Improved algebraic cryptanalysis of QUAD, Bivium and Trivium via graph partitioning on equation systems

    Get PDF
    We present a novel approach for preprocessing systems of polynomial equations via graph partitioning. The variable-sharing graph of a system of polynomial equations is defined. If such graph is disconnected, then the corresponding system of equations can be split into smaller ones that can be solved individually. This can provide a tremendous speed-up in computing the solution to the system, but is unlikely to occur either randomly or in applications. However, by deleting certain vertices on the graph, the variable-sharing graph could be disconnected in a balanced fashion, and in turn the system of polynomial equations would be separated into smaller systems of near-equal sizes. In graph theory terms, this process is equivalent to finding balanced vertex partitions with minimum-weight vertex separators. The techniques of finding these vertex partitions are discussed, and experiments are performed to evaluate its practicality for general graphs and systems of polynomial equations. Applications of this approach in algebraic cryptanalysis on symmetric ciphers are presented: For the QUAD family of stream ciphers, we show how a malicious party can manufacture conforming systems that can be easily broken. For the stream ciphers Bivium and Trivium, we nachieve significant speedups in algebraic attacks against them, mainly in a partial key guess scenario. In each of these cases, the systems of polynomial equations involved are well-suited to our graph partitioning method. These results may open a new avenue for evaluating the security of symmetric ciphers against algebraic attacks

    Constructing VeriïŹable Random Functions with Large Input Spaces

    Get PDF
    We present a family of verifiable random functions which are provably secure for exponentially-large input spaces under a non-interactive complexity assumption. Prior constructions required either an interactive complexity assumption or one that could tolerate a factor 2^n security loss for n-bit inputs. Our construction is practical and inspired by the pseudorandom functions of Naor and Reingold and the verifiable random functions of Lysyanskaya. Set in a bilinear group, where the Decisional Diffie-Hellman problem is easy to solve, we require the Decisional Diffie-Hellman Exponent assumption in the standard model, without a common reference string. Our core idea is to apply a simulation technique where the large space of VRF inputs is collapsed into a small (polynomial-size) input in the view of the reduction algorithm. This view, however, is information-theoretically hidden from the attacker. Since the input space is exponentially large, we can first apply a collision-resistant hash function to handle arbitrarily-large inputs

    Cryptographic Tools for Privacy Preservation and Verifiable Randomness

    Get PDF
    Our society revolves around communication. The Internet is the biggest, cheapest and fastest digital communication channel used nowadays.Due to the continuous increase of daily communication among people worldwide, more and more data might be stolen, misused or tampered.We require to protect our communications and data by achieving privacy\ua0and\ua0confidentiality.Despite the two terms, "privacy"\ua0and "confidentiality",are often used as synonymous, in cryptography they are modelled in very different ways.Intuitively, cryptography can be seen as a tool-box in which every scheme, protocol or primitive is a tool that can be used to solve specific problems and provide specific communication security guarantees such as confidentiality. Privacy is instead not easy to describe and capture since it often depends on "which" information is available, "how"\ua0are these data used and/or "who" has access to our data.This licentiate thesis raises research questions and proposes solutions related to: the possibility of defining encryption schemes that provide both strong security and privacy guarantees; the importance of designing cryptographic protocols that are compliant with real-life privacy-laws or regulations; and the necessity of defining a post-quantum mechanism to achieve the verifiability of randomness.In more details, the thesis achievements are:(a) defining a new class of encryption schemes, by weakening the correctness property, that achieves Differential Privacy (DP), i.e., a mathematically sound definition of privacy;(b) formalizing a security model for a subset of articles in the European General Data Protection Regulation (GDPR), designing and implementing a cryptographic protocol based on the proposed GDPR-oriented security model, and;(c) proposing a methodology to compile a post-quantum interactive protocol for proving the correct computation of a pseudorandom function into a non-interactive one, yielding a post-quantum mechanism for verifiable randomness

    Constrained Pseudorandom Functions: Verifiable and Delegatable

    Get PDF
    Constrained pseudorandom functions (introduced independently by Boneh and Waters (CCS 2013), Boyle, Goldwasser, and Ivan (PKC 2014), and Kiayias, Papadopoulos, Triandopoulos, and Zacharias (CCS 2013)), are pseudorandom functions (PRFs) that allow the owner of the secret key kk to compute a constrained key kfk_f, such that anyone who possesses kfk_f can compute the output of the PRF on any input xx such that f(x)=1f(x) = 1 for some predicate ff. The security requirement of constrained PRFs state that the PRF output must still look indistinguishable from random for any xx such that f(x)=0f(x) = 0. Boneh and Waters show how to construct constrained PRFs for the class of bit-fixing as well as circuit predicates. They explicitly left open the question of constructing constrained PRFs that are delegatable - i.e., constrained PRFs where the owner of kfk_f can compute a constrained key kf2˘7k_{f\u27} for a further restrictive predicate f2˘7f\u27. Boyle, Goldwasser, and Ivan left open the question of constructing constrained PRFs that are also verifiable. Verifiable random functions (VRFs), introduced by Micali, Rabin, and Vadhan (FOCS 1999), are PRFs that allow the owner of the secret key kk to prove, for any input xx, that yy indeed is the output of the PRF on xx; the security requirement of VRFs state that the PRF output must still look indistinguishable from random, for any xx for which a proof is not given. In this work, we solve both the above open questions by constructing constrained pseudorandom functions that are simultaneously verifiable and delegatable

    Verifiable Random Oracles

    Get PDF
    Ziel dieser Arbeit ist es, Random Oracle zu instanziieren, ohne dabei Sicherheit zu verlieren, die im Random Oracle Modell bewiesen wurde. Das dies mit Funktionsfamilien nicht geht ist eine wohl bekannte Aussage, die zuerst von Halevi et al. (IACR’1998) gezeigt wurde. Wir werden aus diesem Grund auf Interaktion zurĂŒckgreifen, aber versuchen, den erzeugten Overhead möglichst zu reduzieren. Um möglichst wenig zu Interagieren fĂŒhren wir ein neues ideales Modell mit Namen Verifiable Random Oracle ein. Dieses Modell bietet zusĂ€tzlich zum Random Oracle ein Verifikations-Orakel, welches bei Eingabe (x, h) 1 ausgibt, falls RO(x) = h und anderenfalls 0. Wir stellen danach zwei konkrete Instanziierungen fĂŒr Verifiable Random Oracle vor, von denen eine keine vertrauenswĂŒrdige Party benötigt. ZusĂ€tzlich reduzieren wir den Netzwerk-Overhead (also die GesamtgrĂ¶ĂŸe der verwendeten Nachrichten). Wenn wir unsere Instanziierungen zusammen mit der Fiat-Shamir Transformation verwen- den, bleibt die Simulation-Soundness Extractability Eigenschaft erhalten. Der Beweiser der Fiat-Shamir Transformation verliert leider seine nicht-InteraktivitĂ€t. Der Verifizierer bleibt jedoch Nicht-interaktiv, da die Instanziierungen des Verifikations-Orakels nicht-interaktiv sind. Die Beweise fĂŒr diese Behauptungen bilden einen signifikanten Teil dieser Arbeit

    Verifiable Random Functions from Standard Assumptions

    Get PDF
    The question whether there exist verifiable random functions with exponential-sized input space and full adaptive security based on a non-interactive, constant-size assumption is a long-standing open problem. We construct the first verifiable random functions which simultaneously achieve all these properties. Our construction can securely be instantiated in symmetric bilinear groups, based on any member of the (n-1)-linear assumption family with n >= 3. This includes, for example, the 2-linear assumption, which is also known as the decision linear (DLIN) assumption

    Compact E-Cash and Simulatable VRFs Revisited

    Get PDF
    Abstract. Efficient non-interactive zero-knowledge proofs are a powerful tool for solving many cryptographic problems. We apply the recent Groth-Sahai (GS) proof system for pairing product equations (Eurocrypt 2008) to two related cryptographic problems: compact e-cash (Eurocrypt 2005) and simulatable verifiable random functions (CRYPTO 2007). We present the first efficient compact e-cash scheme that does not rely on a random oracle. To this end we construct efficient GS proofs for signature possession, pseudo randomness and set membership. The GS proofs for pseudorandom functions give rise to a much cleaner and substantially faster construction of simulatable verifiable random functions (sVRF) under a weaker number theoretic assumption. We obtain the first efficient fully simulatable sVRF with a polynomial sized output domain (in the security parameter).

    Making NSEC5 Practical for DNSSEC

    Get PDF
    NSEC5 is a proposed modification to DNSSEC that guarantees two security properties: (1) privacy against offline zone enumeration, and (2) integrity of zone contents, even if an adversary compromises the authoritative nameserver responsible for responding to DNS queries for the zone. In this work, we redesign NSEC5 in order to make it practical and performant. Our NSEC5 redesign features a new verifiable random function (VRF) based on elliptic curve cryptography (ECC), along with a cryptographic proof of its security. This VRF is also of independent interest, as it is being standardized by the IETF and being used by several other projects. We show how to integrate NSEC5 using our ECC-based VRF into DNSSEC, leveraging precomputation to improve performance and DNS protocol-level optimizations to shorten responses. Next, we present the first full-fledged implementation of NSEC5 for both nameserver and recursive resolver, and evaluate performance under aggressive DNS query loads. We find that our redesigned NSEC5 can be viable even for high-throughput scenarios
    corecore