79 research outputs found

    Simulatable security for quantum protocols

    Full text link
    The notion of simulatable security (reactive simulatability, universal composability) is a powerful tool for allowing the modular design of cryptographic protocols (composition of protocols) and showing the security of a given protocol embedded in a larger one. Recently, these methods have received much attention in the quantum cryptographic community. We give a short introduction to simulatable security in general and proceed by sketching the many different definitional choices together with their advantages and disadvantages. Based on the reactive simulatability modelling of Backes, Pfitzmann and Waidner we then develop a quantum security model. By following the BPW modelling as closely as possible, we show that composable quantum security definitions for quantum protocols can strongly profit from their classical counterparts, since most of the definitional choices in the modelling are independent of the underlying machine model. In particular, we give a proof for the simple composition theorem in our framework.Comment: Added proof of combination lemma; added comparison to the model of Ben-Or, Mayers; minor correction

    Classical Cryptographic Protocols in a Quantum World

    Get PDF
    Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers? Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.Comment: Full version of an old paper in Crypto'11. Invited to IJQI. This is authors' copy with different formattin

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure

    Relations amount Statistical Security Notions - or - Why Exponential Adversaries are Unlimited

    Get PDF
    In the context of Universal Composability, we introduce the concept of universal environments and simulators. Then, Universal Composability is equivalent to Universal Composability wrt. universal environments and simulators. We prove the existence of universal environments and simulators and investigate their computational complexity. From this, we get a number of consequences: First, we see that for polynomial-time protocols, exponential adversarial entities are as powerful as unlimited ones. Further, for a large class of protocols (those with bounded communication-complexity) we can show that UC and specialised-simulator UC coincide in the case of statistical security, i.e., that it is does not matter whether the simulator is chosen in dependence of the environment or not. This also implies that for the Universal Composition Theorem for polynomial-time protocols specialised-simulator UC is sufficient. This result is the last piece needed to find all implications and non-implications between the notions of UC, specialised-simulator UC, O(1)-bounded and polynomially-bounded general composability for polynomial-time protocols in the cases of perfect, statistical and polynomial security. Finally, we introduce the notion of bounded-risk UC, which allows to give explicit security guarantees for concrete security parameters and show that in the above case also this variant coincides with UC

    Universally Composable Quantum Multi-Party Computation

    Full text link
    The Universal Composability model (UC) by Canetti (FOCS 2001) allows for secure composition of arbitrary protocols. We present a quantum version of the UC model which enjoys the same compositionality guarantees. We prove that in this model statistically secure oblivious transfer protocols can be constructed from commitments. Furthermore, we show that every statistically classically UC secure protocol is also statistically quantum UC secure. Such implications are not known for other quantum security definitions. As a corollary, we get that quantum UC secure protocols for general multi-party computation can be constructed from commitments

    A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM

    Get PDF
    Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain properties in the random oracle model (ROM). In terms of computation, our protocol only requires the generation of a public/secret-key pair, two encryption operations and one decryption operation, apart from a few calls to the random oracle. In~terms of communication, our protocol only requires the transfer of one public-key, two ciphertexts, and three binary strings of roughly the same size as the message. Next, we show how to instantiate our construction under the low noise LPN, McEliece, QC-MDPC, LWE, and CDH assumptions. Our instantiations based on the low noise LPN, McEliece, and QC-MDPC assumptions are the first UC-secure OT protocols based on coding assumptions to achieve: 1) adaptive security, 2) optimal round complexity, 3) low communication and computational complexities. Previous results in this setting only achieved static security and used costly cut-and-choose techniques.Our instantiation based on CDH achieves adaptive security at the small cost of communicating only two more group elements as compared to the gap-DH based Simplest OT protocol of Chou and Orlandi (Latincrypt 15), which only achieves static security in the ROM

    Classical cryptographic protocols in a quantum world

    Get PDF
    Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers? Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world

    New Frameworks for Concurrently Composable Multi-Party Computation

    Get PDF

    Secrecy without Perfect Randomness: Cryptography with (Bounded) Weak Sources

    Get PDF
    Cryptographic protocols are commonly designed and their security proven under the assumption that the protocol parties have access to perfect (uniform) randomness. Physical randomness sources deployed in practical implementations of these protocols often fall short in meeting this assumption, but instead provide only a steady stream of bits with certain high entropy. Trying to ground cryptographic protocols on such imperfect, weaker sources of randomness has thus far mostly given rise to a multitude of impossibility results, including the impossibility to construct provably secure encryption, commitments, secret sharing, and zero-knowledge proofs based solely on a weak source. More generally, indistinguishability-based properties break down for such weak sources. In this paper, we show that the loss of security induced by using a weak source can be meaningfully quantified if the source is bounded, e.g., for the well-studied Santha-Vazirna (SV) sources. The quantification relies on a novel relaxation of indistinguishability by a quantitative parameter. We call the resulting notion differential indistinguishability in order to reflect its structural similarity to differential privacy. More concretely, we prove that indistinguishability with uniform randomness implies differential indistinguishability with weak randomness. We show that if the amount of weak randomness is limited (e.g., by using it only to seed a PRG), all cryptographic primitives and protocols still achieve differential indistinguishability

    Environmentally Friendly Composable Multi-Party Computation in the Plain Model from Standard (Timed) Assumptions

    Get PDF
    Starting with the work of Rivest et al. in 1996, timed assumptions have found many applications in cryptography, building e.g. the foundation of the blockchain technology. They also have been used in the context of classical MPC, e.g. to enable fairness. We follow this line of research to obtain composable generic MPC in the plain model. This approach comes with a major advantage regarding environmental friendliness, a property coined by Canetti et al. (FOCS 2013). Informally, this means that our constructions do not “hurt” game-based security properties of protocols that hold against polynomial-time adversaries when executed alone. As an additional property, they can be plugged into any UC-secure protocol without loss of security. Towards proving the security of our constructions, we introduce a variant of the UC security notion that captures timed cryptographic assumptions. Combining standard timed commitments and standard polynomial-time hardness assumptions, we construct a composable commitment scheme in the plain model. As this construction is constant-round and black-box, we obtain the first fully environmentally friendly composable constant-round black-box generic MPC protocol in the plain model from standard (timed) assumptions
    corecore