46 research outputs found

    Simple and tight device-independent security proofs

    Get PDF
    Device-independent security is the gold standard for quantum cryptography: not only is security based entirely on the laws of quantum mechanics, but it holds irrespective of any a priori assumptions on the quantum devices used in a protocol, making it particularly applicable in a quantum-wary environment. While the existence of device-independent protocols for tasks such as randomness expansion and quantum key distribution has recently been established, the underlying proofs of security remain very challenging, yield rather poor key rates, and demand very high quality quantum devices, thus making them all but impossible to implement in practice. We introduce a technique for the analysis of device-independent cryptographic protocols. We provide a flexible protocol and give a security proof that provides quantitative bounds that are asymptotically tight, even in the presence of general quantum adversaries. At a high level our approach amounts to establishing a reduction to the scenario in which the untrusted device operates in an identical and independent way in each round of the protocol. This is achieved by leveraging the sequential nature of the protocol and makes use of a newly developed tool, the “entropy accumulation theorem” of Dupuis, Fawzi, and Renner [Entropy Accumulation, preprint, 2016]. As concrete applications we give simple and modular security proofs for device-independent quantum key distribution and randomness expansion protocols based on the CHSH inequality. For both tasks, we establish essentially optimal asymptotic key rates and noise tolerance. In view of recent experimental progress, which has culminated in loophole-free Bell tests, it is likely that these protocols can be practically implemented in the near future

    Certified randomness in quantum physics

    Get PDF
    The concept of randomness plays an important role in many disciplines. On one hand, the question of whether random processes exist is fundamental for our understanding of nature. On the other hand, randomness is a resource for cryptography, algorithms and simulations. Standard methods for generating randomness rely on assumptions on the devices that are difficult to meet in practice. However, quantum technologies allow for new methods for generating certified randomness. These methods are known as device-independent because do not rely on any modeling of the devices. Here we review the efforts and challenges to design device-independent randomness generators.Comment: 18 pages, 3 figure

    Quantum violations in the Instrumental scenario and their relations to the Bell scenario

    Full text link
    The causal structure of any experiment implies restrictions on the observable correlations between measurement outcomes, which are different for experiments exploiting classical, quantum, or post-quantum resources. In the study of Bell nonlocality, these differences have been explored in great detail for more and more involved causal structures. Here, we go in the opposite direction and identify the simplest causal structure which exhibits a separation between classical, quantum, and post-quantum correlations. It arises in the so-called Instrumental scenario, known from classical causal models. We derive inequalities for this scenario and show that they are closely related to well-known Bell inequalities, such as the Clauser-Horne-Shimony-Holt inequality, which enables us to easily identify their classical, quantum, and post-quantum bounds as well as strategies violating the first two. The relations that we uncover imply that the quantum or post-quantum advantages witnessed by the violation of our Instrumental inequalities are not fundamentally different from those witnessed by the violations of standard inequalities in the usual Bell scenario. However, non-classical tests in the Instrumental scenario require fewer input choices than their Bell scenario counterpart, which may have potential implications for device-independent protocols.Comment: 12 pages, 3 figures. Comments welcome! v4: published version in Quantum journa

    Graphical Methods in Device-Independent Quantum Cryptography

    Get PDF
    We introduce a framework for graphical security proofs in device-independent quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more accessible, facilitate the discovery of new proofs, and enable automated proof verification. As an example of our framework, we reprove a previous result from device-independent quantum cryptography: any linear randomness expansion protocol can be converted into an unbounded randomness expansion protocol. We give a graphical proof of this result, and implement part of it in the Globular proof assistant.Comment: Publishable version. Diagrams have been polished, minor revisions to the text, and an appendix added with supplementary proof

    Experimental device-independent certified randomness generation with an instrumental causal structure

    Full text link
    The intrinsic random nature of quantum physics offers novel tools for the generation of random numbers, a central challenge for a plethora of fields. Bell non-local correlations obtained by measurements on entangled states allow for the generation of bit strings whose randomness is guaranteed in a device-independent manner, i.e. without assumptions on the measurement and state-generation devices. Here, we generate this strong form of certified randomness on a new platform: the so-called instrumental scenario, which is central to the field of causal inference. First, we theoretically show that certified random bits, private against general quantum adversaries, can be extracted exploiting device-independent quantum instrumental-inequality violations. To that end, we adapt techniques previously developed for the Bell scenario. Then, we experimentally implement the corresponding randomness-generation protocol using entangled photons and active feed-forward of information. Moreover, we show that, for low levels of noise, our protocol offers an advantage over the simplest Bell-nonlocality protocol based on the Clauser-Horn-Shimony-Holt inequality.Comment: Modified Supplementary Information: removed description of extractor algorithm introduced by arXiv:1212.0520. Implemented security of the protocol against general adversarial attack
    corecore