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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS\ast 

ROTEM ARNON-FRIEDMAN\dagger , RENATO RENNER\dagger , AND THOMAS VIDICK\ddagger 

Abstract. Device-independent security is the gold standard for quantum cryptography: not
only is security based entirely on the laws of quantum mechanics, but it holds irrespective of any a
priori assumptions on the quantum devices used in a protocol, making it particularly applicable in a
quantum-wary environment. While the existence of device-independent protocols for tasks such as
randomness expansion and quantum key distribution has recently been established, the underlying
proofs of security remain very challenging, yield rather poor key rates, and demand very high quality
quantum devices, thus making them all but impossible to implement in practice. We introduce a
technique for the analysis of device-independent cryptographic protocols. We provide a flexible pro-
tocol and give a security proof that provides quantitative bounds that are asymptotically tight, even
in the presence of general quantum adversaries. At a high level our approach amounts to establishing
a reduction to the scenario in which the untrusted device operates in an identical and independent
way in each round of the protocol. This is achieved by leveraging the sequential nature of the proto-
col and makes use of a newly developed tool, the ``entropy accumulation theorem"" of Dupuis, Fawzi,
and Renner [Entropy Accumulation, preprint, 2016]. As concrete applications we give simple and
modular security proofs for device-independent quantum key distribution and randomness expansion
protocols based on the CHSH inequality. For both tasks, we establish essentially optimal asymptotic
key rates and noise tolerance. In view of recent experimental progress, which has culminated in
loophole-free Bell tests, it is likely that these protocols can be practically implemented in the near
future.
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1. Introduction. Classical cryptography relies on computational assumptions,
such as the hardness of factoring, to deliver a wide range of functionalities, from se-
cure communication to secure distributed computation and program obfuscation. The
advent of quantum information in the 1980s brought forward a completely different
possibility: security based only on the fundamental laws of physics. The quantum pro-
tocols for key distribution by Bennett and Brassard [14] and Ekert [31] allow mutually
trustful users connected only by an authenticated classical channel, and an arbitrary
quantum channel, to establish a private key whose security is guaranteed by the laws
of quantum mechanics. With their private key, the users can then communicate with
perfect security using, e.g., a one-time pad.

Quantum information is a double-edged sword. A typical protocol for quantum
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182 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

key distribution (QKD) requires the users, Alice and Bob, to manipulate quantum
states: for example, in Ekert's protocol, Alice has to prepare multiple entangled pairs
of photons and send one photon from each pair to Bob; both users then perform spe-
cific measurements on their respective photons in order to generate the classical key.
The first proofs of security for QKD crucially relied on the fact that each user's inter-
nal operations were implemented in a specific way: the state preparation implemented
by Alice and the measurements performed by Bob all had to follow the low-level pre-
scription given in the protocol. Initial implementations of QKD revealed how delicate
these assumptions are. This is not only a question of the quality of the devices used.
A wide range of side-channel attacks [33, 48, 79, 35] were able to successfully exploit
the very phenomena of quantum mechanics on which the security of QKD relies, such
as the no-cloning or uncertainty principles, to provide attacks that did not respect
some of the assumptions made by the security proofs, which were difficult, if not
impossible, to verify in practice (such as the assumption that Alice prepares a single
pair of photons at a time, and not a more complex system with additional, undetected
degrees of freedom that could leak information to an eavesdropper).

The paradigm of device independence offers an uncompromising solution to this
conundrum. A cryptographic protocol is termed device-independent (DI) if its security
guarantees hold irrespective of the quality, or trustworthiness, of the physical devices
used to implement the protocol [52, 10] (see [30] for a perspective article). Security in
such protocols should be based only on the statistics observed by the honest parties
executing the protocol. In other words, any execution of the protocol should contain
a ``proof"" that the generated key is secure, a proof that remains valid as long as
very mild assumptions on the physical devices used are satisfied (informally, that no
information is exchanged between the users' and eavesdroppers' laboratories, arguably
an unavoidable requirement).

Although the formulation of the DI paradigm appeared only much later in work of
Mayers and Yao, the possibility for device independence was arguably already present
in Ekert's protocol. Ekert's intuition was to tie the privacy of the users' keys to the
nonlocal effects that led to the generation of the key (measurement of a Bell pair).
Ekert observed that quantum entanglement allows distant parties to generate bits
that are correlated in such a strong way that it (seemingly) precludes any correlation
with a third party---a phenomenon now known as the monogamy of correlations.

The framework for the study of nonlocality was put in place by Bell in the
1960s [12]. Motivated by questions in the foundations of quantum mechanics (includ-
ing a proposal for an experiment that could in principle test the EPR ``paradox"" [29]),
Bell introduced the notion of what is now known as a Bell inequality (see [66, 17] for
excellent reviews on the topic). In the context of device independence, we interpret
a Bell inequality [12] as the specification of a small game1 that can be played by the
honest parties using their respective quantum devices. What makes the game inter-
esting is that it is designed in a way such that any classical strategy for the devices
(i.e., any model for their actions that can be implemented as a convex combination
of deterministic strategies) leads to a success probability \omega c in the game such that
\omega c < 1. In contrast, there exists a quantum strategy (i.e., one in which the devices
determine outcomes in the game by performing local measurements on a shared en-
tangled state) that achieves a greater success probability, \omega q > \omega c. The use of such
a game has the following major immediate consequence: if the honest parties observe
that their devices are able to attain a success probability that is strictly larger than

1For an explicit example of a game, see section 2.3.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 183

\omega c, they can conclude that their devices must be nonclassical---the devices must share
entanglement. This provides a first step in the implementation of the DI program:
a statistical test that can be performed with the devices and that guarantees some
element of quantumness. Early results in device independence went further by estab-
lishing a quantitative relationship between the devices' success probability and the
amount of secret randomness produced during the game [58, 4], leading to a ``statisti-
cal test for information-theoretically secure randomness"" [22], a task that is provably
impossible to achieve using classical systems alone.

In the past decade, an extended line of works has explored the application of the
device-independence paradigm to multiple cryptographic tasks. A partial list includes
QKD [10, 57, 78], randomness expansion [58, 77, 24, 53] and amplification [23, 34,
19, 15, 45], verified quantum computation [36, 38, 21], bit commitment [5], and weak
string erasure [44]. For virtually all these tasks, a proof of security ultimately amounts
to bounding the knowledge that an adversary (a malicious party, or an eavesdropper)
can gain about the output of the protocol. This knowledge, or uncertainty, is modeled
using a notion of entropy called the smooth conditional min-entropy [62]. In the case
of QKD, for example, the output is the raw key K, and proving security is essentially
equivalent2 to establishing a lower bound on the smooth conditional min-entropy
H\varepsilon 

min(K| E), where E is the quantum system held by Eve, which can be initially
correlated to the device producing K (for formal definitions, see section 2).

Evaluating the smooth min-entropy H\varepsilon 
min(K| E) of a large system is often dif-

ficult, especially in the DI setting where not much is known about the way K is
produced. One assumption commonly used to simplify this task is that the bits of
K = K1, . . . ,Kn are created in an independent and identical way and hence K itself
is an independent and identically distributed (i.i.d.) random variable. That is, it is
assumed that the device held by Alice and Bob makes the same measurements on
the same quantum states in every round of the protocol. This means that the device
is initialized with some (unknown) state which has a tensor product structure \rho \otimes n

AB

and that the measurements have a tensor product structure as well. In that case, the
total entropy in K can be easily related to the sum of the entropies in each round
separately.3 A bound on the entropy accumulated in one round can usually be de-
rived using the expected winning probability in the game played in that round, which
in turn can be easily estimated during the protocol in the i.i.d. case using standard
Chernoff-type bounds since the same game is just being played repeatedly with the
same strategy.

Unfortunately, even though quite convenient (and, in many cases, seemingly nec-
essary) for the analysis, the i.i.d. assumption is a very strong one in the DI scenario.
In particular, under such an assumption the device cannot use any internal memory
(i.e., its actions in one round cannot depend on the previous rounds) or even display
time-dependent behavior (due to inevitable imperfections, for example).

Without this assumption about the device, however, not much is a priori known
about the structure of K, the expected winning probability in one round of the proto-
col, or the way the total entropy of K is accumulated one round after the other (as the
device might correlate the different rounds in an almost arbitrary way). Therefore,
security proofs that estimated H\varepsilon 

min(K| E) directly for the most general case had to

2From that point onward, standard classical postprocessing steps, e.g., error correction and
privacy amplification, suffice to prove the security of the protocol; see section 5 for the details.

3Formally, the bound can be calculated using the quantum asymptotic equipartition property [74],
for example.
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184 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

use far more complicated techniques and statistical analysis compared to the i.i.d.
case.4

1.1. Results and contributions. We introduce a general framework, consist-
ing of a flexible protocol and analysis, for obtaining DI proofs of security for a broad
range of cryptographic tasks. Our technique takes advantage of the sequential nature
of the protocol, as well as the specific way in which classical statistics are collected
by users of the protocol, to establish a reduction to the i.i.d. setting. A major advan-
tage of our approach is that the reduction is virtually lossless in terms of parameters.
Hence, our result establishes the a priori surprising fact that general quantum adver-
saries are no stronger than an adversary restricted to i.i.d. attacks. As a consequence,
we are able to extend tight results known for, e.g., DIQKD, under the i.i.d. assump-
tion, to the most general setting. This yields the best rates known for any protocol
for a DI cryptographic task.

To further discuss our results, we state an informal version of our main theorem,
which describes the entropy generation guarantees of our protocol (see Lemma 3.2
for a formal statement and Theorem 4.1 for the specialization of the protocol to the
CHSH inequality).

Theorem 1.1 (main theorem, informal). Fix a choice of parameters, including
an underlying nonlocal game, for Protocol 3.1. Then there exist constants c1, c2 > 0
such that the following holds: Let D be any device and \rho | \Omega be the state generated using
Protocol 3.1, conditioned on the protocol not aborting. Then, for any \varepsilon 1, \varepsilon 2 \in (0, 1),
either the protocol aborts with probability greater than 1 - \varepsilon 1 or

(1.1) H\varepsilon 2
min (AB| XYTFE)\rho | \Omega 

> c1n - c2
\sqrt{} 

n log(1/\varepsilon 1\varepsilon 2) .

We remark that there are multiple implementations of devices that when used in
an execution of Protocol 3.1 lead to a negligible probability of the protocol aborting
(this is formalized in our completeness statement; see section 3.2). Importantly, de-
vices that are within reach of current state-of-the-art technology also belong to this
set of devices. Thus, Theorem 1.1 gives a nontrivial bound on the entropy produced
by such devices. This was not achieved by previous works, as discussed in section 1.2.

Let us explain (1.1). The registers AB contain the classical outputs generated
by the device during the protocol. The registers XYTF contain the classical inputs
selected by the users, as well as auxiliary classical information exchanged during the
protocol, that may be leaked to the adversary. E is a quantum register that describes
the adversary's quantum system, which may be correlated with the initial state of
the devices. Thus, (1.1) gives a very precise bound on the amount of the smooth
min-entropy present in the users' outputs at the end of the protocol, conditioned on
all information available to the adversary. (As we discuss later, this formulation is
flexible enough that it can be applied to obtain guarantees not only for the task of
randomness generation but also for quantum key distribution and other cryptographic
tasks.)

We give explicit formulas for computing the constants c1 and c2 that appear
in (1.1) as a function of the parameters of the protocol (such as the fraction of rounds
used for testing and the threshold value based on which the decision to accept or reject
is made). Importantly, the constant c1 that governs the leading-order term equals the
optimal constant, i.e., the same leading constant that would be obtained under the

4This led to nonoptimal proofs, both readability- and parameter-wise (e.g., key rates or amount
of tolerable noise). See section 1.2 for a discussion of related works.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 185

i.i.d. assumption, which by the asymptotic equipartition property is the Shannon
entropy accumulated in one round of the protocol. Thus our result implies that
general quantum adversaries do not force weaker rates compared to those achieved in
less general scenarios. That is, it is possible to achieve rate vs. noise tradeoffs which
are as good as those achieved in much more restricted settings, such as under the i.i.d.
assumption.

To determine the constant c1, the user of our result must perform only one further
crucial optimization: identify a so-called ``min-tradeoff function,"" a convex, differen-
tiable function that lower bounds the conditional Shannon entropy generated in a
single round of the protocol, as a function of the game value. Informally, the require-
ment that the min-tradeoff function is differentiable and convex allows one to account
for lower-order fluctuations in the entropy generated that arise from finite statistics.
In section 4, we give a min-tradeoff function that can be used when the game that
underlies the protocol is the CHSH game of Clauser et al. [20]. Other use cases may
require other min-tradeoff functions; indeed, in section 1.2 below we survey recent
works that applied our results to a variety of scenarios by computing an appropriate
min-tradeoff function.

As already mentioned, beyond the first-order term in (1.1) our result also provides
control over the constant c2 in front of the second-order term. Such control is a
necessary condition for any application where finite values of n need to be considered,
such as in cryptography, and even more so quantum cryptography, where values of n
that can be achieved in practice remain relatively small. (See, e.g., Figure 6, where
one can see that finite-size effects can play an important role up to even moderately
large values of n \approx 1010.) As loophole-free Bell tests (a necessity for DI cryptography)
are finally being realized [43, 70, 37], the ability to derive essentially optimal values
for c1 and c2 considerably decreases the gap between theory and experiments, thereby
marking an important step towards practical DI protocols and their implementations.

We provide two concrete applications for Theorem 1.1. To begin with, we consider
a DIQKD protocol based on the CHSH game and prove its security. The achieved
key rates and noise tolerance are significantly higher than in previous works. For
large enough number of rounds n, the key rate as a function of the noise tolerance
essentially coincides with the optimal result of [57], derived for the restricted i.i.d.
and asymptotic case. In particular, as in [57], we show that the protocol can tolerate
up to the optimal error rate of 7.1\% while still producing a positive key rate. (For
comparison,5 in [78] the maximal noise tolerance was 1.6\%.) Moreover, the achieved
key rates are comparable to those achieved in device-dependent QKD protocols [68, 69]
already starting from n = 106. (For further details and plots, see section 5.5.2.) As a
second application we consider a randomness expansion protocol based on the CHSH
inequality. Here as well, we obtain an expansion rate which is essentially the same as
the optimal rate achieved in [58] in the case of classical adversaries only, while our
result holds against quantum adversaries. This is much better than the rates obtained
in previous works [77, 53, 54].

Main ideas of the proof. As expressed earlier, the main difficulty in the analysis
is to overcome the lack of any a priori independence assumptions on the quantum
state shared by the users' devices, as well as a potential eavesdropper. Towards this
we first leverage the sequential nature of the protocol. Our approach is to show that
the random variables that model events observed by the users (such as the classical

5The noise models of the two works are a bit different; the value of 1.6\% is the relevant one after
equating the models.
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186 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

input/output behavior of their device in successive rounds) obey a natural Markov
property. Using that property, we are able to apply a newly developed tool, the
``entropy accumulation theorem"" (EAT) [28], to act as a replacement for the chain
rule for the conditional smooth min-entropy. The EAT allows us to quantify how
entropy ``accumulates"" across many random variables generated through a certain
iterative quantum processes as long as it fulfils a number of conditions that are tied
to the Markov property (see section 2.6 for the exact statement). As a result, we
obtain a modular protocol that can be used as a ``skeleton"" for many DI cryptographic
tasks; the protocol comes with fine-tuned guarantees on the entropy that is generated
throughout as a function of quantities that can be estimated based on the analysis
of a single round of the protocol. Next, we provide a concrete instantiation of the
protocol based on the CHSH inequality. By combining the results of [57], derived
for the i.i.d. case, with our analysis of the general protocol, we obtain a lower bound
on the generated entropy rate when using the CHSH inequality as a basis for the
protocol. Finally, we apply our results to prove the security of a DIQKD protocol
that we propose, with essentially optimal key rate and noise tolerance.

1.2. Related and subsequent work. The idea of basing the security of cryp-
tographic protocols (QKD especially) on the violation of Bell inequalities originates in
the celebrated work of Ekert [31]. Later, Mayers and Yao [52] recognized that devices
maximally violating a Bell inequality (they considered a variant of the CHSH inequal-
ity) could be fully characterized, up to local degrees of freedom, and thus need not be
trusted a priori. Barrett, Hardy, and Kent [10] were the first to combine both ideas
together and derive a proof of security for QKD in the DI scenario. Their security
proof holds even in the presence of a superquantum adversary, limited only by the
nonsignalling principle. The protocol of [10], however, could not tolerate any amount
of noise and produced just one secret bit when using the device many times (i.e., the
key rate is zero).

Following these initial works, a long line of research [2, 3, 67, 1, 49, 57, 40, 39,
50, 51] led to protocols, and proof techniques, that establish nonvanishing key rates
with a positive noise tolerance in the i.i.d. setting against quantum or superquantum
adversaries (the former typically leading to better rates and noise tolerance). Most
relevant for our work are the results of [57], where the security of a DIQKD protocol
was proven in the asymptotic limit, i.e., when the device is used n \rightarrow \infty times, and
under the i.i.d. assumption described above. Their protocol is based on the CHSH
inequality [20], and their analysis shows that it achieves the best possible rates under
these assumptions.

For the more challenging scenario presented by the non-i.i.d. setting, security was
first established in [78]; see also [61], where the authors give a secure protocol but
with vanishing rate and no noise tolerance. A more recent proof of security by Miller
and Shi [53] is closest to our results in that it bounds the amount of entropy generated
in the protocol in a round-by-round fashion, similar in spirit to (but technically very
different from) our use of the EAT (see section 2.6 for a description). The security
proofs of the existing works are quite complex and achieve relatively low key rates
and noise tolerance (if any).

Although it was introduced only much more recently than QKD, the first task to
have received a complete proof of security in the DI setting is the task of randomness
expansion. This task, first considered in [22], is the problem of expanding a short
initial amount of seed randomness into a longer string that is information-theoretically
random; aside from its practical relevance, the task received attention because it is
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 187

one of the simplest problems that is classically impossible, yet for which quantum
computing provides an information-theoretically secure solution. In the non-i.i.d.
setting, it was shown in [58] that a quadratic expansion was possible, but the analysis
in that paper was limited to the case of classical adversaries. Security against quantum
adversaries was established in [77], where it was shown that exponential expansion
is possible. The analysis of [77], however, does not tolerate noise in the devices;
subsequent work [53] provided a different analysis that is able to tolerate a positive
noise rate.

The maximum amount of randomness that can be generated from one system
violating a specific Bell inequality by a given amount has been well studied. In [58],
tight bounds for the CHSH game are obtained; see, e.g., [26, 46] for recent works
exploring different aspects of the question. However, when using the device repeatedly,
in the non-i.i.d. setting, few works give explicit rates; to the best of our knowledge, the
only quantitative results available are from [54] (see also [59, 32] for an analysis in the
non-i.i.d. case but under the assumption that the adversary holds only classical side
information) and remain relatively weak in comparison to the best one may expect
from the known results under the i.i.d. assumption.

Since the initial announcement of our work in [6],6 our framework has already
been applied to a variety of additional tasks, including conference key agreement [65],
randomness expansion and privatization [45], and randomness generation with sub-
linear quantum resources [8]. Our results have been applied to the analysis of the first
experimental implementations of a protocol for randomness generation in the fully DI
framework [47, 71]. In all these cases, the difficulty consists in establishing a good
min-tradeoff function by analyzing in detail a single round of the protocol used; our
results then almost automatically imply the appropriate rate for the n-round protocol.
More recently, the second-order terms in the EAT have been improved in [27].

Structure of the paper. The paper is organized as follows. We start with some
preliminaries in section 2. In section 3, we show how the EAT can be used in DI
protocols for a general Bell inequality. Then, in section 4, we explicitly calculate and
plot the entropy rates for the case of the CHSH inequality. We continue in sections
5 and 6 with our DIQKD and randomness expansion protocols, respectively. We end
in section 7 with some open questions.

2. Preliminaries.

2.1. General notation. All logarithms are in base 2. Random variables (RVs)
are denoted by capital letters, while specific values are denoted by small letters. We
denote vectors in bold face; for example, X = X1, . . . , Xn is a vector of RVs. Sets are
denoted with calligraphic fonts.

The set \{ 1, 2, . . . , n\} is denoted by [n].
Given a value c = c1, . . . , cn \in \scrC n, where \scrC is a finite alphabet, we denote by

freq\bfc the probability distribution over \scrC defined by freq\bfc (\~c) =
| \{ i| ci=\~c\} | 

n for \~c \in \scrC .
We assume familiarity with the standard notation for quantum states and mea-

surements; see [56] for a comprehensive introduction. We generally index pure quan-
tum states or density matrices by the registers on which they are supported; e.g.,
\rho AB is a density matrix supported on the Hilbert space \scrH A \otimes \scrH B . If \rho \bfC E is a state
classical on C, we write Pr [c]\rho to denote the probability that \rho assigns to c. For

6The publication [6] is an extended abstract that presents the main results reported in this
submission, but has a much more limited discussion of applications, and only contains informal proof
sketches.
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188 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

m \in N+, \rho Um
denotes the completely mixed state on m qubits and I is the identity

operator.
Let f : \scrS \rightarrow R be a function over some set \scrS \subset Rm. Then the infinity norm of

the gradient of f is defined as

\| \nabla f\| \infty = sup

\Biggl\{ \bigm| \bigm| \bigm| \bigm| \partial 

\partial xi
f(x)

\bigm| \bigm| \bigm| \bigm| : x \in \scrS , i \in \{ 1, . . . ,m\} 

\Biggr\} 
.

For convenience, all important parameters, constants, and RVs used in the paper
are listed in the tables in Appendix A.

2.2. Entropies and Markov chains.
Entropies and conditional entropies. h is used for the binary entropy function

h(p) =  - p log(p) - (1 - p) log(1 - p). The von Neumann entropy H(\rho ) of a quantum
state \rho is given by H(\rho ) =  - Tr(\rho log \rho ). Given a bipartite state \rho AE \in \scrH A \otimes \scrH E ,
the conditional von Neumann entropy is defined as H(A| E)\rho AE

= H(\rho AE) - H(\rho E).
When the state on which the entropy is evaluated is clear from the context, we drop
the subscript and write H(A| E).

Min-entropy. Given a state classical on A, \rho AE =
\sum 

a pa | a\rangle \langle a| \otimes \rho aE , the condi-
tional min-entropy is

Hmin(A| E) =  - log pguess(A| E) ,

where pguess(A| E) is the maximum probability of guessing A given the quantum sys-
tem E:

pguess(A| E) = max
\{ Ma

E\} a

\sum 
a

paTr(M
a
E\rho 

a
E) ,

and the maximum is taken over all positive-operator valued measures \{ Ma
E\} a on E.

For any quantum state \rho AE , H(A| E) \geq Hmin(A| E).
The smooth conditional min-entropy with smoothness parameter \varepsilon of a state

\rho AE is defined to be H\varepsilon 
min(A| E)\rho AE

= max\sigma AE\in \scrB \varepsilon (\rho AE) Hmin(A| E)\sigma AE
, for \scrB \varepsilon (\rho AE)

the set of subnormalized states \sigma AE with P (\rho AE , \sigma AE) \leq \varepsilon , where P is the purified
distance [75].

Max-entropy. The quantum smooth max-entropy of a state \rho AE is given by

H\varepsilon 
max(A| E)\rho AE

= log inf
\sigma AE\in \scrB \varepsilon (\rho AE)

sup
\tau E

\| \sigma 
1
2

AE\tau 
 - 1

2

E \| 21 .

We will also use the closely related H\varepsilon 
0 entropy. For classical X and Y distributed

according to P\bfX \bfY , H0(X| Y) = max\bfy log
\bigm| \bigm| Supp \bigl( P\bfX | \bfY =\bfy 

\bigr) \bigm| \bigm| , where Supp
\bigl( 
P\bfX | \bfY =\bfy 

\bigr) 
=

\{ x| P\bfX | \bfY =\bfy (x) > 0\} . Its smooth version is given by

H\varepsilon 
0(X| Y) = min

\Omega 
max
\bfy 

log
\bigm| \bigm| Supp \bigl( P\bfX | \Omega ,\bfY =\bfy 

\bigr) \bigm| \bigm| ,
where the minimum ranges over all events \Omega with probability at least 1 - \varepsilon .

Markov chains. A tripartite quantum state \rho ABC is said to fulfil the Markov chain
condition A \updownarrow B \updownarrow C if I(A : C| B) = 0, where I(A : C| B) = H(AB) +H(BC)  - 
H(B) - H(ABC) is the conditional mutual information. I(A : C| B) = 0 if and only
if given B, A and C are independent.7

7There are also other equivalent ways of defining Markov chains for quantum states [42], but for
our purposes this definition suffices.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 189

2.3. Nonlocal games. We consider general two-player nonlocal games G. In a
game G, the two players, Alice and Bob, share a bipartite quantum state. Given a
question for Alice and a question for Bob, they can choose how to measure their parts
of the state and then use the measurement outcomes to supply an answer each. They
win if their answers fulfil a predefined requirement, called the winning criterion.

More formally, a game G is defined via sets of questions and answers for Alice
and Bob, \scrX ,\scrY and \scrA ,\scrB , a distribution \pi over \scrX \times \scrY (we will generally assume this
is a product distribution), and a winning criterion w : \scrX \times \scrY \times \scrA \times \scrB \rightarrow \{ 0, 1\} .8

A strategy for the players in a gameG is specified by, first, a bipartite state \rho QAQB
,

where Alice holds register QA and Bob register QB , and, second, local measurements
that each player performs on his or her register in order to determine the answer to
the given question. We use \omega \in [0, 1] to denote the winning probability of a strategy
in the game G.

We sometimes use the equivalent language of Bell inequalities. The Bell functional
associated to a nonlocal game is the linear function from R\scrX \times \scrY \times \scrA \times \scrB to R that maps a
tuple p to

\sum 
x,y,a,b \pi (x, y)w(x, y, a, b)p(x, y, a, b). In this language, the quantum value

of the game is also called the largest violation of the Bell inequality, i.e., the largest
value attained by the Bell functional when evaluated on tuples p that correspond to
conditional distributions that can be realized by performing local measurements on
an entangled state.

The CHSH game. We use a variant of the CHSH game previously used in [57, 78]
in the context of DIQKD. In this game, Alice has two possible inputs \scrX = \{ 0, 1\} 
and Bob three possible inputs \scrY = \{ 0, 1, 2\} . The output sets are \scrA = \scrB = \{ 0, 1\} .
The input distribution \pi CHSH is uniform on \scrX \times \scrY . The winning condition is the
following:9

wCHSH =

\left\{     
1, x, y \in \{ 0, 1\} and a\oplus b = x \cdot y,
1, (x, y) = (0, 2) and a = b,

0 otherwise.

The optimal quantum strategy for this game is the same as in the standard CHSH
game [20], except that if Bob's input is a 2, he applies the same measurement as
Alice's measurement on input 0. Since the underlying state is maximally entangled,
this ensures that their outputs will always match when (x, y) = (0, 2).

Conditioned on Bob's input not being 2, the game played is the CHSH game.
The optimal quantum strategy in the CHSH game achieves winning probability \omega =
2+

\surd 
2

4 \approx 0.85, while the optimal classical strategy achieves a winning probability of
0.75.

Instead of describing the quantum advantage in the CHSH game in terms of the
winning probability, one can also work with the correlation coefficients defined by
Exy = Pr[a = b| x, y]  - Pr[a \not = b| xy] for any pair of inputs (x, y). The CHSH value
is then given by \beta = E00 + E01 + E10  - E11. The relation between the winning
probability in the CHSH game and the CHSH value is given by \omega = 1/2 + \beta /8. The
largest values that these quantities can take in the classical case are \beta = 2 and \omega = 3

4 ,

and the optimal quanta are \beta = 2
\surd 
2 and \omega = 2+

\surd 
2

4 .

2.4. Untrusted device. In a DI protocol, the honest parties interact with an
untrusted device. We now explain what is meant by this term and what the assump-

8A general Bell inequality would allow for an R-valued w; we will not need this here.
9The value of wCHSH for the inputs (x, y) = (1, 2) is left undefined, as it is never used.
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190 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

tions regarding such a device are. For simplicity, we consider the case of two honest
parties, Alice and Bob, but this can be extended to more parties in the obvious way.

A device D is modeled by a tripartite apparatus (including both state and mea-
surement devices), distributed between Alice, Bob, and the adversary Eve. We think
of the device as being prepared by Eve, and hence we call it untrusted. This allows
Eve, in particular, to keep a purification of Alice and Bob's quantum state in a quan-
tum register in her possession.10 Although the device is untrusted, we always assume
that the following requirements hold (some of these requirements can be verified).

The device can be used to run the considered protocol. That is, Alice and Bob can
interact with D according to the relevant protocol (for an example of a protocol, see
Protocol 3.1 below). Alice and Bob's components of D implement the protocol by
making sequential measurements on quantum states. In each round of the protocol,
we say that the device is implementing some strategy for the game G being played.
The device may have memory, and thus apply a different strategy each time the game
is played, depending on the previous rounds. Therefore, the measurement operators
may change in each round, and the state on which the measurements are performed
may be the postmeasurement state from the previous round, a new state, or any
combination of these two.

We sometimes use the terminology honest device or honest implementation. A
device is said to be honest if it implements the protocol by using a certain prespecified
strategy. In that case, the actions of the device are known and fixed (noise can still
be present).

Communication (signaling) between the components of the device. The communi-
cation between Alice, Bob, and Eve's components is restricted in the following way:

1. Alice and Bob's components of D cannot signal to Eve's component.
2. Alice and Bob can decide when to allow communication (if any) between their

components. This ensures that the underlying quantum state of Alice and
Bob's components of the device is (at least) bipartite and that the measure-
ments made in the two components, in each round, are in tensor product with
one another.

3. Alice and Bob can decide when to receive communication (if any) from Eve's
component.

The requirement given in Item 1 is necessary for DI cryptography; without it, the
device could directly send to Eve all the raw data it generated.

Item 2 implies that Alice and Bob's component must be (at least) bipartite. This
is necessary to assure that the violation of the considered Bell inequality is meaningful
and implies security.

Items 2 and 3 give Alice, Bob, and Eve's components the possibility to commu-
nicate in certain stages of the protocol. This is neither a restrictive nor a necessary
assumption. This possibility to communicate is added since it is advantageous to
actual implementations of certain protocols. To be specific, we consider the following
scenario: In between different rounds of the protocol, Alice and Bob's components
of the device are allowed to communicate freely. During the execution of a single
round, however, no communication is allowed. In particular, when the game is being
played, there is no communication between the components once the honest parties'

10We emphasise that Eve is not required to measure her quantum state at any particular point.
During the run of the considered protocol, Eve can eavesdrop on all the classical communication
between the honest parties and can later choose to measure her quantum register depending on this
information.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 191

inputs are chosen and until the outputs are supplied by the device.11 Furthermore, in
between rounds Eve may send information to the device but not receive any from it.
In actual implementations, this implies that entanglement can be distributed ``on the
fly"" for each round of the protocol, instead of maintaining large quantum memories.

Other assumptions. Apart from the above description of the untrusted device, we
assume the following other standard assumptions used in DI cryptography:

1. The honest parties' physical locations are secure (unwanted information can-
not leak outside to Eve or between their devices).

2. The honest parties have a trusted random number generator.
3. The honest parties have trusted classical postprocessing units to make the

necessary (classical) calculations during the protocol.
4. There is an authenticated, but public, classical channel connecting the honest

parties (if necessary).
5. Quantum physics is correct.

2.5. Security definitions.
DIQKD. A DIQKD protocol (see section 5 for a description of an explicit pro-

tocol) consists of an interaction between two trusted parties, Alice and Bob, and an
untrusted device as defined in section 2.4. At the end of the protocol, each party out-
puts a key, \~KA for Alice and \~KB for Bob. The goal of the adversary, Eve, is to gain
as much information as possible about Alice and Bob's keys without being detected
(i.e., in the case where the protocol is not being aborted).

Correctness, secrecy, and overall security of a protocol are defined as follows (see
also [60, 11]).

Definition 2.1 (correctness). A DIQKD protocol is said to be \varepsilon corr-correct, when
implemented using a device D, if Alice and Bob's keys, \~KA and \~KB, respectively, are
identical with probability at least 1 - \varepsilon corr. That is, Pr( \~KA \not = \~KB) \leq \varepsilon corr.

Definition 2.2 (secrecy). A DIQKD protocol is said to be \varepsilon sec-secret, when im-
plemented using a device D, if for a key of length l, (1 - Pr[abort]) \| \rho \~KAE  - \rho Ul

\otimes 
\rho E\| 1 \leq \varepsilon sec, where E is a quantum register that may initially be correlated with D.

\varepsilon sec in the above definition can be understood as the probability that some non-
trivial information leaks to the adversary [60].

If a protocol is \varepsilon corr-correct and \varepsilon sec-secret (for a given D), then it is \varepsilon sQKD-
correct-and-secret for any \varepsilon sQKD \geq \varepsilon corr + \varepsilon sec.

Definition 2.3 (security). A DIQKD protocol is said to be (\varepsilon sQKD, \varepsilon 
c
QKD, l)-

secure if the following hold:
1. (Soundness) For any implementation of the device D, it is \varepsilon sQKD-correct-and-

secret.
2. (Completeness) There exists an honest implementation of the device D such

that the protocol aborts with probability at most \varepsilon cQKD.

The protocols that we consider below take into account possible noise in the
honest implementation. That is, even when there is no adversary at all, the actual
implementation of the devices might not be perfect. Thus, the completeness of the
protocol implies its robustness to the desired amount of noise.

Last, a remark regarding the composability of this security definition is in order.

11To be more precise and concrete, in Protocol 3.1, for example, communication is allowed in
every round i right after step 4 is done, and until the beginning of round i + 1, i.e., before Ti+1 is
chosen.
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192 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

A security definition is said to be composable [18, 13, 60] if it implies that the pro-
tocol can be used arbitrarily and composed with other protocols (proven secure by
themselves), without compromising security. Obviously, if Alice and Bob wish to use
the keys they produced in the DIQKD protocol in some other cryptographic protocol
(i.e., they compose the two protocols), it is necessary for them to use protocols which
were proven to have composable security.

For the case of (device-dependent) QKD, Definition 2.3 was rigorously proven to
be composable [60]. This suggests that the same security definition should also be the
relevant one in the DI context, and, indeed, as far as we are aware, it is the definition
that has been used in all prior works on DI cryptography. Nevertheless, the claim
that Definition 2.3 is composable for DI protocols as well has never been rigorously
proven, and the result of [9] suggests that this is not the case when the same devices
are reused in the composition. We still use this definition, as it seems like the most
promising security definition to date. This implies that, as in all other works, after
the end of the protocol the device cannot be used again in general [9].

Randomness expansion. In the task of randomness expansion, there is a single
user interacting sequentially with an untrusted device. At the start of the interaction,
the user is presented with a source R \in \{ 0, 1\} r of uniformly random bits. The user
then interacts sequentially with the device in a deterministic way (the only sources of
randomness being the initial string R and any randomness which may be present in
the devices' outputs). At the end of the protocol, the user returns a string Z \in \{ 0, 1\} m
of m bits that is statistically close to uniform, conditioned on R as well as any side
information of the adversary. (See section 6 for a concrete example of a randomness
expansion protocol.) More formally, we require the following.

Definition 2.4 (security of randomness expansion). A protocol is said to be
called an (\varepsilon cRE , \varepsilon 

s
RE)-secure r \rightarrow m randomness expansion protocol 12 if, provided as

input r uniformly random bits, the following hold:
1. (Soundness) For any implementation of the device D, the protocol either

aborts or returns a classical string Z \in \{ 0, 1\} m and we have

(1 - Pr[abort]) \| \rho ZRE  - \rho Um \otimes \rho RE\| 1 \leq \varepsilon sRE ,

where E is a quantum register that may initially be correlated with D.
2. (Completeness) There exists an honest implementation of the device such that

the protocol aborts with probability at most \varepsilon cRE.

As in the case of DIQKD, this security definition was not proven to be composable
in general.

2.6. The entropy accumulation theorem. The main tool used in this work
is the EAT [28, Theorem 4.4]. Below we give the necessary details in a notation
appropriate for our work (although less general than the original EAT).

We work with channels with the following properties.

Definition 2.5 (EAT channels). EAT channels \scrN i : Ri - 1 \rightarrow RiAiBiIiCi, for
i \in [n], are completely positive and trace-preserving (CPTP) maps such that for all
i \in [n], the following hold:

12All parameters \varepsilon cRE , \varepsilon sRE , r, and m will in general be functions of a parameter n that also
parameterizes the protocol and the number of rounds of interactions between the user and the
device.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 193

1. Ai, Bi, Ii, and Ci are finite-dimensional classical systems (RVs). Ai and Bi

are of dimensions dAi
and dBi

, respectively. Ri are arbitrary quantum regis-
ters.

2. For any input state \sigma Ri - 1R\prime , where R\prime is a register isomorphic to Ri - 1, the
output state \sigma RiAiBiIiCiR\prime = (\scrN i \otimes IR\prime )

\bigl( 
\sigma Ri - 1R\prime 

\bigr) 
has the property that the

classical value Ci can be measured from the marginal \sigma AiBiIi without changing
the state.

3. For any initial state \rho 0R0E
, the final state \rho \bfA \bfB \bfI \bfC E = (TrRn

\circ \scrN n \circ \cdot \cdot \cdot \circ \scrN 1)\otimes 
IE \rho 0R0E

fulfils the Markov chain condition A1...i - 1B1...i - 1 \updownarrow I1...i - 1E \updownarrow Ii
for each i \in [n].

Definition 2.6 (tradeoff functions). Let \scrN 1, . . . ,\scrN N be a family of EAT chan-
nels. Let \scrC denote the common alphabet of C1, . . . , Cn. A differentiable and convex
function fmin from the set of probability distributions p over \scrC to the real numbers is
called a min-tradeoff function for \{ \scrN i\} if it satisfies13

fmin(p) \leq inf
\sigma Ri - 1R\prime :\scrN i(\sigma )Ci

=p
H (AiBi| IiR\prime )\scrN i(\sigma )

for all i \in [n], where the infimum is taken over all input states of \scrN i for which the
marginal on Ci of the output state is the probability distribution p.

Similarly, a differentiable and concave function fmax from the set of probability
distributions p over \scrC to the real numbers is called a max-tradeoff function for \{ \scrN i\} 
if it satisfies

fmax(p) \geq sup
\sigma Ri - 1R\prime :\scrN i(\sigma )Ci

=p

H (AiBi| IiR\prime )\scrN i(\sigma )

for all i \in [n], where the supremum is taken over all input states of \scrN i for which the
marginal on Ci of the output state is the probability distribution p.

Theorem 2.7 (EAT [28]). Let \scrN i : Ri - 1 \rightarrow RiAiBiIiCi for i \in [n] be EAT
channels as in Definition 2.5, \rho \bfA \bfB \bfI \bfC E = (TrRn

\circ \scrN n \circ \cdot \cdot \cdot \circ \scrN 1) \otimes IE \rho R0E the final
state, \Omega an event defined over \scrC n, p\Omega the probability of \Omega in \rho , and \rho | \Omega the final state
conditioned on \Omega . Let \varepsilon s \in (0, 1).

For fmin a min-tradeoff function for \{ \scrN i\} as in Definition 2.6 and any t \in R such
that fmin (freq\bfc ) \geq t for any c \in \scrC n for which Pr [c]\rho | \Omega 

> 0,

H\varepsilon s
min (AB| IE)\rho | \Omega 

> nt - v
\surd 
n ,

where v = 2 (log(1 + 2dAiBi
) + \lceil \| \triangledown fmin\| \infty \rceil )

\sqrt{} 
1 - 2 log(\varepsilon s \cdot p\Omega ) and dAiBi

denotes
the dimension of AiBi.

Similarly, for fmax a max-tradeoff function for \{ \scrN i\} as in Definition 2.6 and any
t \in R such that fmax (freq\bfc ) \leq t for any c \in \scrC n for which Pr [c]\rho | \Omega 

> 0,

H\varepsilon s
max (AB| IE)\rho | \Omega 

< nt+ v
\surd 
n ,

where v = 2 (log(1 + 2dAiBi) + \lceil \| \triangledown fmax\| \infty \rceil )
\sqrt{} 
1 - 2 log(\varepsilon s \cdot p\Omega ).

To gain a bit of intuition on how Theorem 2.7 is going to be used, note the follow-
ing. The event \Omega will usually be the event of the considered protocol not aborting (or

13The infimum and supremum over the empty set are defined as plus and minus infinity, respec-
tively.
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194 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

a closely related event). The relevant state for which the smooth min- or max-entropy
is going to be evaluated is \rho | \Omega . To use the theorem, it should be possible to define
some EAT channels \{ \scrN i\} that produce the final state \rho from the initial state \rho R0

by
applying the channels sequentially; these channels are not necessarily the channels
used in the actual protocol to produce \rho . The tradeoff functions can be seen as a
bound on the entropy accumulated in one round i, and, if such a bound t exists, then
Theorem 2.7 asserts that the total amount of entropy, accumulated in all rounds i = 1
to n together, is roughly n times t. It is in this sense that the theorem essentially
allows us to perform a reduction to the i.i.d. setting.

3. DI entropy accumulation protocol. The main task in proving the security
of DIQKD and other protocols is to prove a bound on the (smooth) min-entropy of
the raw data held by Alice and Bob, conditioned on all the information available to
the adversary Eve. The goal of this section is to show how the EAT (Theorem 2.7)
can be used in a general DI setting to achieve such a bound.

For this, we consider the entropy accumulation protocol, described as Protocol 3.1
below. Although we call it a ``protocol,"" one should see it more as a mathematical tool
which allows us to use the EAT rather than an actual protocol to be implemented.14

To be more specific, the EAT channels (as in Definition 2.5) will be defined via the
steps made in the entropy accumulation protocol. The relevance of the protocol stems
from the fact that the final state at the end of the protocol, on which a smooth min-
entropy bound can be proven using the EAT, is the same state as (or can easily be
related to) the final state in the actual protocol to be executed (depending on the
specific application).

3.1. The protocol. Protocol 3.1 is used to generate raw data for Alice and
Bob by using an untrusted device D. It is based on an arbitrary nonlocal game G
as defined in section 2.3, together with a definition of test and generation inputs for
Alice and Bob. The test inputs, \scrX t \subset \scrX and \scrY t \subset \scrY , are used by the parties during
the test rounds (Ti = 1 below) from which the Bell violation is estimated, while the
generation inputs, \scrX g \subset \scrX and \scrY g \subset \scrY , are used in the other rounds (the sets are
not necessarily disjoint). We also assume that \scrX g \subset \scrX t, as it is important that, given
a value in \scrX g, the device is not able to infer the value of Ti. Ideally, one should use a
game G for which Alice and Bob's outputs are perfectly correlated (or anticorrelated)
with sufficiently high probability when the parties use the generation inputs.15

We now define the EAT channels using the rounds of the protocol (where one
round includes steps 2--6 in Protocol 3.1). For this, the following notation is used.
For every i \in \{ 0\} \cup [n], the (unknown) quantum state of the device D shared by Alice
and Bob after round i of the protocol is denoted by \rho iQAQB

. We denote the register
holding this state by Ri. In particular, R0 \equiv QAQB at the start of the protocol.
At step 4 in Protocol 3.1, the quantum state of the devices is changed from \rho i - 1

QAQB

in Ri - 1 to \rho iQAQB
in Ri by the use of the device.16 Our EAT channels are then

14In particular, in a setting with two distinct parties, Alice and Bob, communication is required
to actually implement it. We ignore this here, as it is not relevant for the analysis.

15In a DIQKD protocol (or other tasks with two separated honest parties), this requirement is used
to ensure a good key rate, as the output bits in the generation rounds will be the main contributors
to the final key. For tasks such as randomness expansion, where there is only one honest party, it is
not necessary to generate matching outputs.

16To be a bit more precise, the quantum state is changed in two steps. First, the relevant
measurement of step 4 is done (where it is assumed that the measurements of the different components
are in tensor product). Then, after Ai and Bi are recorded, the different components of the device
are allowed to communicate. Thus, some further changes can be made to the postmeasurement state
even based on the memory of all components together.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 195

Protocol 3.1 Entropy accumulation protocol.

Arguments:
G -- two-player nonlocal game
\scrX g \subset \scrX t \subset \scrX -- generation and test inputs for Alice
\scrY g,\scrY t \subset \scrY -- generation and test inputs for Bob
D -- untrusted device of (at least) two components that can play G repeatedly
n \in N+ -- number of rounds
\gamma \in (0, 1] -- expected fraction of test rounds
\omega exp -- expected winning probability in G for an honest (perhaps noisy) imple-

mentation
\delta est \in (0, 1) -- width of the statistical confidence interval for the estimation test

1: For every round i \in [n] do steps 2--6:
2: Alice chooses Ti \in \{ 0, 1\} at random such that Pr(Ti = 1) = \gamma and sends her

choice of Ti to Bob over a public authenticated classical channel.
3: If Ti = 0, Alice and Bob choose inputs Xi \in \scrX g and Yi \in \scrY g, respectively. If

Ti = 1, they choose inputs Xi \in \scrX t and Yi \in \scrY t.
4: Alice and Bob use D with Xi, Yi and record their outputs as Ai and Bi, respec-

tively.
5: (Optional symmetrization step): Alice and Bob choose together a (random)

value Fi and respectively update their outputs Ai, Bi depending on Fi.
6: If Ti = 0, then Bob updates Bi to Bi =\bot , and they set Ci =\bot . If Ti = 1, they

set Ci = w (Ai, Bi, Xi, Yi).
7: Alice and Bob abort if

\sum 
i Ci < (\omega exp\gamma  - \delta est) \cdot n .

R0

E

\rho 0QAQBE

R1

O1

\scrN 1

\rho 1QAQB

Ri - 1 Ri

Oi

\scrN i

\rho i - 1
QAQB

\rho iQAQB

Rn - 1 Rn

On

\scrN n

\rho n - 1
QAQB

\rho nQAQB

Fig. 1. The EAT channels \scrN i : Ri - 1 \rightarrow RiAiBiXiYiTiCi. In the figure, Oi = AiBiXiYiTiCi.
The initial quantum state shared by Alice, Bob, and Eve is \rho 0QAQBE , and the sequence of maps \scrN i

creates the state \rho nQAQBE\bfO .

\scrN i : Ri - 1 \rightarrow RiAiBiXiYiTiCi defined by the CPTP map describing the ith round of
Protocol 3.1, as implemented by the untrusted device D (see Figure 1). We prove in
Lemma 3.2 below that they indeed satisfy the conditions given in Definition 2.5.

In the following, we are interested in the state of Alice, Bob, and Eve after the
nth round of the protocol, both before and after Alice and Bob decide whether or not
to abort in step 7. The state before step 7 is denoted by

(3.1) \rho \bfA \bfB \bfX \bfY \bfT \bfC E = (TrRn \circ \scrN n \circ \cdot \cdot \cdot \circ \scrN 1)\otimes IE \rho 0QAQBE .

In step 7, Alice and Bob decide whether or not they should abort the protocol
according to the estimated Bell violation in the test rounds. Let \Omega denote the event
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196 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

that they do not abort,17 i.e.,

(3.2) \Omega =

\Biggl\{ \sum 
j

Cj \geq (\omega exp\gamma  - \delta est) \cdot n

\Biggr\} 
.

The final state, conditioned on not aborting, is denoted by \rho \bfA \bfB \bfX \bfY \bfT \bfC E| \Omega or just
\rho | \Omega to ease notation. Below we bound the entropy which is accumulated in this state
during the rounds of the protocol.

3.2. Completeness. Suppose that Alice and Bob execute Protocol 3.1 with a
device D which performs i.i.d. measurements on a tensor product state \rho \otimes n

QAQB
such

that the winning probability achieved in game G by the device D executed on a single
state \rho QAQB

is \omega exp. We call any such implementation an honest implementation.
The following lemma bounds the probability of Protocol 3.1 aborting in an honest
implementation.

Lemma 3.1. Protocol 3.1 is complete with completeness error \varepsilon cEA \leq exp( - 2n\delta 2est).
That is, the probability that the protocol aborts for an honest implementation of the
devices D is at most \varepsilon cEA.

Proof. Alice and Bob abort in step 7 when the sum of the Ci is not sufficiently
high (this happens when the estimated Bell violation is too low or when not enough
test rounds were chosen). In the honest implementation, Ci are i.i.d. RVs with E [Ci] =
\omega exp\gamma . Therefore, we can use Hoeffding's inequality:

(3.3) \varepsilon cEA = Pr

\left[  \sum 
j

Cj \geq (\omega exp\gamma  - \delta est) \cdot n

\right]  \leq exp( - 2n\delta 2est) .

3.3. Soundness. The EAT, Theorem 2.7, almost immediately provides a general
lower bound on the amount of entropy generated by Protocol 3.1. We state the result
as Lemma 3.2 below; in section 4, we will obtain a more refined bound based on an
instantiation of the protocol with the game G taken to be the CHSH game.

Lemma 3.2. Let D be any device, and for i \in [n], let Ii = XiYiTiFi and \scrN i :
Ri - 1 \rightarrow RiAiBiIiCi be the CPTP map implemented by the ith round of Protocol 3.1.
Let \rho be the state generated by the protocol (as defined in (3.1)), \Omega the event that
the protocol does not abort (as defined in (3.2)), and \rho | \Omega the state conditioned on
\Omega . Let fmin be a real-valued differentiable function defined on the set of probability
distributions p over the alphabet \{ \bot , 0, 1\} of Ci such that

(3.4) \forall i \in [n], fmin(p) \leq inf
\sigma Ri - 1R\prime :\scrN i(\sigma )Ci

=p
H (AiBi| XiYiTiFiR

\prime )\scrN i(\sigma )
,

where the infimum over an empty set is defined as infinity. Then, for any \varepsilon EA, \varepsilon s \in 
(0, 1), either the protocol aborts with probability 1 - Pr(\Omega ) \geq 1 - \varepsilon EA or

(3.5) H\varepsilon s
min (AB| XYTFE)\rho | \Omega 

> nt - v
\surd 
n,

where

t = min
p: p(1)\geq \omega exp\gamma  - \delta est

fmin(p) ,

v = 2 (log(1 + 2dAiBi
) + \lceil \| \triangledown fmin\| \infty \rceil )

\sqrt{} 
1 - 2 log(\varepsilon s \cdot \varepsilon EA),

17Note that Cj \in \{ 0, 1,\bot \} ; the quantity
\sum 

j Cj should be understood as
\sum 

j| Cj=1 1.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 197

and dAiBi
denotes the dimension of AiBi.

Proof. In order to apply the EAT, we first verify that the conditions stated in
Definition 2.5 are fulfilled. Using that Ci is a function of Ai, Bi, Xi, and Yi, the first
two conditions in Definition 2.5 clearly hold. Moreover, the Markov chain condition

\forall i \in [n], A1...iB1...i \updownarrow X1...iY1...iT1...iF1...iE \updownarrow Xi+1Yi+1Ti+1Fi+1

holds as well since the values of Xi+1, Yi+1, Ti+1, and Fi+1 are chosen independently
of everything else at each round. To conclude, note that the event \Omega of the protocol
not aborting implies that the fraction of successful game rounds freq\bfc (1) is at least
\omega exp\gamma  - \delta est for any c for which Pr [c]\rho | \Omega 

> 0.

The main work remaining for a successful use of Protocol 3.1 for entropy gener-
ation consists in obtaining a good lower bound in (3.5), i.e., devising an appropriate
min-tradeoff function fmin satisfying (3.4). In order to understand the task to be ac-
complished, note that \scrN i defines Xi, Yi, Ti, and Fi, so although the infimum in (3.4)
is taken over all states \sigma , the distributions of Xi, Yi, Ti, and Fi are fixed. Moreover,
the infimum is only taken over states with \scrN i(\sigma )Ci = p, a condition which fixes the
Bell violation achieved by \sigma under the bipartite measurement performed by the de-
vice. This is precisely the sense in which the EAT can be understood as providing a
reduction to the i.i.d. case.

Lower bounds of the form of (3.4) of different quality can be obtained depending
on the specific Bell inequality employed in the protocol. A general method consists
in using the chain rule to write

H (AiBi| XiYiTiFiR
\prime )\scrN i(\sigma )

= H (Ai| XiYiTiFiR
\prime )\scrN i(\sigma )

+H (Bi| XiYiTiFiR
\prime Ai)\scrN i(\sigma )

(3.6)

\geq Hmin (Ai| XiYiTiFiR
\prime )\scrN i(\sigma )

.

Note that here the RV Fi depends on the (optional) symmetrization step and was
introduced precisely to enable an easier lower bound on the quantities above; we will
show how it can be used in the specific case of the CHSH game in the next section.

A bound using the min-entropy Hmin, instead of H itself, is not tight in gen-
eral, and one can expect to lose quite a lot by performing the relaxation above
(see, for example, Figure 2). The advantage, however, is that a lower bound on
Hmin (Ai| XiYiTiFiR

\prime )\scrN i(\sigma )
can be found using general techniques based on the semidef-

inite programming (SDP) hierarchies of [55]. For a slightly better bound, one should
not drop the second term in (3.6). A bound on Hmin (AiBi| XiYiTiFiR

\prime )\scrN i(\sigma )
(usu-

ally called ``global randomness"") can also be found using the SDP hierarchies (see,
e.g., [58]). For further details and references, see [17, section IV-C].

4. A bound for the CHSH game. In this section, we devise a specific min-
tradeoff function fmin which, through an application of Lemma 3.2, leads to a concrete
bound on the entropy generated by Protocol 3.1 when the game G is the CHSH game
(described in section 2.3).

We use Protocol 3.1 with the following choices: \scrX g = \{ 0\} , \scrX t = \{ 0, 1\} , \scrY g = \{ 2\} ,
and \scrY t = \{ 0, 1\} .

In order to fully specify the protocol, it suffices to describe the symmetrization
step. In this step, Alice and Bob choose together a uniform bit Fi, and they both
flip their output bits if and only if Fi = 1. This symmetrization is helpful in the
proof of the main theorem below. The downside is that it costs a lot of randomness
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0.76 0.78 0.8 0.82 0.84
0

0.2

0.4

0.6

0.8

1

\omega 

H

Hmin

Fig. 2. The lower bounds on H
\bigl( 
Ai| XiYiTiR

\prime 
i - 1

\bigr) 
and Hmin

\bigl( 
Ai| XiYiTiR

\prime 
i - 1

\bigr) 
as a function of

the Bell violation for the CHSH inequality. The bound on H
\bigl( 
Ai| XiYiTiR

\prime 
i - 1

\bigr) 
is given in (4.7),

while the bound on Hmin

\bigl( 
Ai| XiYiTiR

\prime 
i - 1

\bigr) 
can be taken from [50]; both bounds are asymptotically

tight. For nonoptimal Bell violation, the min-entropy is significantly lower than the entropy.

to implement, which can be problematic for some applications, such as randomness
expansion. At the end of the section, we show that the step is in fact not necessary
in any real implementation of the protocol.

The proof of Theorem 4.1 shows that the rate of entropy generation is governed
by the following functions, where h is the binary entropy and \gamma , p(1) \in (0, 1] such that
p(1)/\gamma \geq 3/4:18

g(p) =

\left\{     1 - h

\biggl( 
1
2
+ 1

2

\sqrt{} 
16 p(1)

\gamma 

\Bigl( 
p(1)
\gamma 

 - 1
\Bigr) 
+ 3

\biggr) 
, p(1)

\gamma 
\in 
\Bigl[ 
3
4
, 2+

\surd 
2

4

\Bigr] 
,

1 , p(1)
\gamma 

\in 
\Bigl[ 
2+

\surd 
2

4
, 1
\Bigr] 
,

fmin (p, pt) =

\Biggl\{ 
g (p) , p(1) \leq pt(1) ,

d
dp(1)

g(p)
\bigm| \bigm| 
pt

\cdot p(1) +
\Bigl( 
g(pt) - d

dp(1)
g(p)

\bigm| \bigm| 
pt

\cdot pt(1)
\Bigr) 
, p(1) > pt(1) ,

\eta (p, pt, \varepsilon s, \varepsilon e) = fmin (p, pt) - 
1\surd 
n
2

\biggl( 
log 13 +

\biggl\lceil 
d

dp(1)
g(p)

\bigm| \bigm| 
pt

\biggr\rceil \biggr) \sqrt{} 
1 - 2 log(\varepsilon s \cdot \varepsilon e) ,

\eta opt(\varepsilon s, \varepsilon e) = max
3
4
<

pt(1)
\gamma 

< 2+
\surd 

2
4

\eta (\omega exp\gamma  - \delta est, pt, \varepsilon s, \varepsilon e) .(4.1)

Theorem 4.1 (main theorem). Let D be any device, \rho the state (as defined in
(3.1)) generated using Protocol 3.1 when the game G is the CHSH game, \Omega (as defined
in (3.2)) the event that the protocol does not abort, and \rho | \Omega the state conditioned on
\Omega . Then, for any \varepsilon EA, \varepsilon s \in (0, 1), either the protocol aborts with probability greater
than 1 - \varepsilon EA or

(4.2) H\varepsilon s
min (AB| XYTFE)\rho | \Omega 

> n \cdot \eta opt(\varepsilon s, \varepsilon EA) ,

where \eta opt is defined in (4.1).

18We define the functions g and fmin only in the regime in which the protocol does not abort, i.e.,
p(1)/\gamma \geq 3/4. Any extension of g to the regime p(1)/\gamma \in [0, 3/4] that keeps the function differential
can be used for mathematical completeness.
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0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85
0

0.2

0.4

0.6

0.8

1

\omega exp

\eta o
p
t

i.i.d. asymptotic rate

n = 108, \delta est = 10 - 3, \varepsilon s = \varepsilon EA = 10 - 6

n = 107, \delta est = 10 - 3, \varepsilon s = \varepsilon EA = 10 - 5

n = 107, \delta est = 10 - 3, \varepsilon s = \varepsilon EA = 10 - 6

n = 106, \delta est = 10 - 3, \varepsilon s = \varepsilon EA = 10 - 3

n = 106, \delta est = 10 - 3, \varepsilon s = \varepsilon EA = 10 - 4

n = 106, \delta est = 10 - 3, \varepsilon s = \varepsilon EA = 10 - 5

n = 105, \delta est = 10 - 2, \varepsilon s = \varepsilon EA = 10 - 3

Fig. 3. \eta opt(\omega exp) for \gamma = 1 and several choices of \delta est, n, \varepsilon EA, and the smoothing parame-
ter \varepsilon s. Note that for the errors of the protocols to be meaningful the number of rounds n should be at
least of order \delta  - 2

est . \varepsilon EA and \varepsilon s affect the soundness error in the protocols of the following sections.
The dashed line shows the optimal asymptotic (n \rightarrow \infty ) rate under the assumption that the devices
are such that Alice, Bob, and Eve share an (unknown) i.i.d. state.

The rate \eta opt as a function of the expected Bell violation \omega exp is plotted in Figure 3
for \gamma = 1 and several choices of values for \varepsilon EA, \delta est, and n. For comparison, we also
plot in Figure 3 the asymptotic rate (n \rightarrow \infty ) under the assumption that the state of
the device is an (unknown) i.i.d. state \rho \otimes n

QAQBE . In this case, the quantum asymptotic
equipartition property [74, Theorems 1 and 9] implies that the optimal rate is the
Shannon entropy accumulated in one round of the protocol (as given in (4.7)). This
rate, appearing as the dashed line in Figure 3, is an upper bound on the entropy
that can be accumulated. One can see that as the number of rounds in the protocol
increases our rate \eta opt approaches this optimal rate.

Proof of Theorem 4.1. Based on Lemma 3.2, it will suffice to define a min-tradeoff
function fmin such that (3.4) is satisfied. Using the chain rule,

H (AiBi| XiYiTiFiR
\prime )\scrN i(\sigma )

\geq H (Ai| XiYiTiFiR
\prime )\scrN i(\sigma )

.

Furthermore,

H (Ai| XiYiTiFiR
\prime )\scrN i(\sigma )

= Pr [Xi = 0] \cdot H (Ai| YiTiFiR
\prime , Xi = 0)\scrN i(\sigma )

+ Pr [Xi = 1] \cdot H (Ai| YiTiFiR
\prime , Xi = 1)\scrN i(\sigma )

.
(4.3)

In the following, we find a bound on H (Ai| YiTiFiR
\prime , Xi = 0)\scrN i(\sigma )

. Using exactly the

same steps, the same bound can be derived on H (Ai| YiTiFiR
\prime , Xi = 1)\scrN i(\sigma )

.
Due to the bipartite requirement on the untrusted deviceD used to implement the

protocol and since Alice's actions (and her devices) are independent of Bob's choice
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200 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

of Yi and Ti for the case Xi = 0, we have19

H (Ai| YiTiFiR
\prime , Xi = 0)\scrN i(\sigma )

= H (Ai| FiR
\prime , Xi = 0)\scrN i(\sigma )

.

Defining the conditional entropy, one can rewrite H (Ai| FiR
\prime , Xi = 0)\scrN i(\sigma )

as follows:

H (Ai| FiR
\prime , Xi = 0) = H (AiFiR

\prime | Xi = 0) - H (FiR
\prime | Xi = 0)

= H (Ai| Xi = 0) +H (FiR
\prime | Ai, Xi = 0) - H (FiR

\prime | Xi = 0)

= H (Ai| Xi = 0) - \chi (Ai : FiR
\prime | Xi = 0)

= 1 - \chi (Ai : FiR
\prime | Xi = 0) ,(4.4)

where \chi (Ai : FiR
\prime | Xi = 0) = H (FiR

\prime | Xi = 0)  - H (FiR
\prime | Ai, Xi = 0) and the last

equality follows from the symmetrization step, step 5.
For states leading to a CHSH violation of \beta \in [2, 2

\surd 
2] (for inputs restricted to

\{ 0, 1\} \times \{ 0, 1\} ), a tight bound on \chi (Ai : FiR
\prime | Xi = 0) was derived in [57, section 2.3]:

(4.5) \chi (Ai : FiR
\prime | Xi = 0) \leq h

\Biggl( 
1

2
+

1

2

\sqrt{} 
\beta 2

4
 - 1

\Biggr) 
.

Since \omega = 1
8\beta + 1

2 , for \omega \in 
\bigl[ 
3
4 ,

2+
\surd 
2

4

\bigr] 
(i.e., a violation in the quantum regime), we get

\chi (Ai : FiR
\prime | Xi = 0) \leq h

\biggl( 
1

2
+

1

2

\sqrt{} 
16\omega (\omega  - 1) + 3

\biggr) 
.

Combining this bound with (4.3) and (4.4), we conclude that for a state with winning
probability \omega ,

(4.6) H (AiBi| XiYiTiFiR
\prime ) \geq 1 - h

\biggl( 
1

2
+

1

2

\sqrt{} 
16\omega (\omega  - 1) + 3

\biggr) 
.

Consider a probability distribution p = freq\bfc resulting from the observed data.
If p(0) + p(1) \not = \gamma , then the set of states fulfilling \scrN i(\sigma )Ci

= p is empty and the
condition on the min-tradeoff function given in Definition 2.6 becomes trivial. Hence,
for the construction of the min-tradeoff function we can restrict our attention to p

with p(0) + p(1) = \gamma . For such p, we can write \omega = p(1)
p(0)+p(1) = p(1)

\gamma . Altogether, we

have for all p in the considered regime,

inf
\sigma Ri - 1R\prime :\scrN i(\sigma )Ci

=p
H (AiBi| XiYiTiFiR

\prime )\scrN i(\sigma )

\geq 1 - h

\Biggl( 
1

2
+

1

2

\sqrt{} 
16

p(1)

\gamma 

\biggl( 
p(1)

\gamma 
 - 1

\biggr) 
+ 3

\Biggr) 
.

(4.7)

Define a function g over p for which p(2)/\gamma \in [3/54, 1] by

(4.8) g(p) =

\left\{     1 - h

\biggl( 
1
2 + 1

2

\sqrt{} 
16 p(1)

\gamma 

\Bigl( 
p(1)
\gamma  - 1

\Bigr) 
+ 3

\biggr) 
, p(1)

\gamma \in 
\Bigl[ 
3
4 ,

2+
\surd 
2

4

\Bigr] 
,

1 , p(1)
\gamma \in 

\Bigl[ 
2+

\surd 
2

4 , 1
\Bigr] 
.

19We assume that the value of Ti is exchanged over a classical authenticated channel to which
the device D does not have access. In particular, Alice's part of the device is independent from the
value of Ti.

c\bigcirc 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/2

0/
19

 to
 1

31
.2

15
.7

1.
19

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 201

pt(1)
0

1

p(1)

H

Tangent line at pt(1)

fmin

Fig. 4. The construction of the min-tradeoff function fmin as in (4.10). The plot shows the
values of the min-tradeoff function on a slice p(0) + p(1) = constant.

From (4.7), it follows that any choice of fmin(p) that is differentiable and satisfies
fmin(p) \leq g(p) for all p will satisfy (3.4).

For p(1)
\gamma = 2+

\surd 
2

4 , the derivative of g is infinite. For the final bound of the

EAT to be meaningful, fmin should be chosen such that \| \triangledown fmin\| \infty is finite. To
remedy this problem, we choose fmin by ``cutting"" the function g and ``gluing"" it to a
linear function at some point pt (which is later optimized), while keeping the function
differentiable. By doing this, we ensure that the gradient of fmin is bounded, at the
cost of losing a bit of entropy for p with p(1) > pt(1). Towards this, denote

(4.9) a(pt) =

\biggl\lceil 
d

dp(1)
g(p)

\bigm| \bigm| 
pt

\biggr\rceil 
and b(pt) = g(pt) - a(pt) \cdot pt(1).

We then make the following choice20 for the min-tradeoff function fmin (see Fig-
ure 4):

(4.10) fmin (p, pt) =

\Biggl\{ 
g (p) , p(1) \leq pt(1) ,

a(pt) \cdot p(1) + b(pt) , p(1) > pt(1) .

From the definition of a and b in (4.9), this function is differentiable and fulfils the
condition given in (3.4). Furthermore, by definition for any choice of pt it holds that
\| \triangledown fmin(\cdot , pt)\| \infty \leq a(pt).

Applying Lemma 3.2, we conclude that for any 3
4 < pt(1)

\gamma < 2+
\surd 
2

4 , either the
protocol aborts with probability greater than 1 - \varepsilon EA or

(4.11) H\varepsilon s
min (AB| XYTFE)\rho | \Omega 

> nfmin (\omega exp\gamma  - \delta est, pt) - 
\surd 
n\zeta (pt)

20Note that fmin is nonpositive for
p(1)
\gamma 

\leq 3/4, but this regime is not relevant, as it would lead

to the protocol aborting; the extension of fmin to that range of values is only for mathematical
convenience.
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202 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

for \zeta (pt, \varepsilon s, \varepsilon AE) = 2 (log 13 + a(pt))
\sqrt{} 
1 - 2 log(\varepsilon s \cdot \varepsilon AE) (as dAiBi

= 6). To ob-
tain the optimal rate, we optimize over pt . Denote \eta (p, pt, \varepsilon s, \varepsilon AE) = fmin (p, pt)  - 
1\surd 
n
\zeta (pt, \varepsilon s, \varepsilon AE), and let

\eta opt(\varepsilon s, \varepsilon AE) = max
3
4<

pt(1)
\gamma < 2+

\surd 
2

4

\eta (\omega exp\gamma  - \delta est, pt, \varepsilon s, \varepsilon AE) .

Plugging this into (4.11), the theorem follows.

We end this section by showing how the particular implementation of the sym-
metrization step, step 5, of Protocol 3.1 made here for the CHSH game can be ignored
in any implementation of the protocol. For this, rewrite (4.2) more formally as21

(4.12) H\varepsilon s
min (g\bfF (AB) | XYTFE)\rho | \Omega 

> n \cdot \eta opt ,

where g\bfF is the function that flips the bits according to F. Since for any fixed value
of F , gF is a deterministic function, it follows from [69, Lemma 1] that for any \varepsilon s \geq 0,

(4.13) H\varepsilon s
min (AB| XYTE)\rho | \Omega 

\geq H\varepsilon s
min (g\bfF (AB) | XYTFE)\rho | \Omega 

.

Combining (4.12) and (4.13) proves the following corollary.

Corollary 4.2. Under the same assumptions as Theorem 4.1, but for an im-
plementation of Protocol 3.1 in which the symmetrization step, step 5, is omitted, for
any \varepsilon EA, \varepsilon s \in (0, 1), either the protocol aborts with probability greater than 1 - \varepsilon EA or

(4.14) H\varepsilon s
min (AB| XYTE)\rho | \Omega 

> n \cdot \eta opt(\varepsilon s, \varepsilon EA) ,

where \eta opt is defined in (4.1).

In Appendix B, we use a small modification of the entropy accumulation protocol
and the above proof to get a similar bound on the entropy rate which has a better
dependency on the probability of a test \gamma . This is of relevance for some applications,
such as DIQKD. The calculations presented in Appendix B are slightly more technical
than the proof given above but do not require any substantially different observations.

5. DIQKD.

5.1. The protocol. Our protocol for DIQKD is described as Protocol 5.1 below.
An honest implementation is described in section 5.2.

In the first part of the protocol, Alice and Bob use their devices to produce the
raw data, similarly to what is done in the entropy accumulation protocol, Protocol 3.1
(with the game G equal to the CHSH game, as in section 4). The main difference is
that Bob's outputs always contains Bob's ith measurement outcome (instead of being
set to \bot in all rounds for which Ti = 0); to make the distinction explicit, we denote
Bob's outputs in Protocol 5.1 with a tilde, \~B.

In the second part of the protocol, Alice and Bob apply classical postprocessing
steps to produce their final keys. We choose classical postprocessing steps that opti-
mize the key rate, but which may not be optimal in other aspects, e.g., computation
time. The protocol and the analysis can easily be adapted for other choices of classical
postprocessing.

21Previously, for ease of notation we wrote AB for the flipped outputs; here we denote the same
bits as g\bfF (AB) to make the flipping operation explicit.
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 203

We now describe the three postprocessing steps, error correction, parameter esti-
mation, and privacy amplification, in detail.22

Error correction. Alice and Bob use an error correction protocol EC to obtain
identical raw keys KA and KB from their bits A, \~B. In our analysis, we use a pro-
tocol, based on universal hashing, which minimizes the amount of leakage to the
adversary [16, 64] (see also section 3.3.2 in [11] for details). To implement this pro-
tocol, Alice chooses a hash function and sends the chosen function and the hashed
value of her bits to Bob. We denote this classical communication by O. Bob uses
O, together with his prior knowledge \~BXYT, to compute a guess \^A for Alice's bits
A. If EC raises a ``fail"" flag, Alice and Bob abort; in an honest implementation, this
happens with probability at most \varepsilon cEC. The probability that Alice and Bob do not

abort but hold different raw keys KA = A and KB = \^A \not = KA is at most \varepsilon EC.
Due to the communication from Alice to Bob, leakEC bits of information are leaked

to the adversary. The following guarantee follows for the described protocol [64]:

(5.1) leakEC \leq H
\varepsilon \prime EC
0

\Bigl( 
A| \~BXYT

\Bigr) 
+ log

\biggl( 
1

\varepsilon EC

\biggr) 

for \varepsilon cEC = \varepsilon \prime EC + \varepsilon EC and where H
\varepsilon \prime EC
0 (A| \~BXYT) is evaluated on the state in an

honest implementation of the protocol. For example, for quantum channels with an

i.i.d. noise model, H
\varepsilon \prime EC
0

\bigl( 
A| \~BXYT

\bigr) 
can be bounded by above using the asymptotic

equipartition property [74] (see (5.9) below for the explicit bound in that case). If a
larger fraction of errors occur when running the actual DIQKD protocol (for instance,
due to adversarial interference), the error correction might not succeed, as Bob will
not have a sufficient amount of information to obtain a good guess of Alice's bits. If
so, this will be detected with probability at least 1 - \varepsilon EC and the protocol will abort.

Parameter estimation. After the error correction step, Bob has all of the relevant
information to perform parameter estimation from his data alone without any further
communication with Alice. Using \~B and KB , Bob sets Ci = wCHSH

\bigl( 
\^Ai, \~Bi, Xi, Yi

\bigr) 
=

wCHSH

\bigl( 
KBi, \~Bi, Xi, Yi

\bigr) 
for the test rounds and Ci =\bot otherwise. He aborts if the

fraction of successful game rounds is too low, that is, if
\sum 

j Cj < (\omega exp\gamma  - \delta est) \cdot n.
As Bob does the estimation using his guess of Alice's bits, the probability of

aborting in this step in an honest implementation, \varepsilon cPE, is bounded by

\varepsilon cPE \leq Pr

\Biggl( \sum 
j

Cj < (\omega exp\gamma  - \delta est) \cdot 
\sum 
j

Tj

\bigm| \bigm| \bigm| KA = KB

\Biggr) 
(5.2)

+ Pr
\bigl( 
KA \not = KB and EC does not abort

\bigr) 
\leq \varepsilon cEA + \varepsilon EC

since conditioned on the error correction protocol succeeding the probability of abort-
ing in the honest case is exactly as in the entropy accumulation protocol (Protocol 3.1).

Privacy amplification. Finally, Alice and Bob use a (quantum-proof) privacy am-
plification protocol PA (which takes some random seed S as input) to create their final

22We remark that in step 2 of Protocol 5.1 Alice and Bob choose Ti together (or exchange its
value between them) in every round of the protocol and choose their inputs accordingly. This is in
contrast to choosing Alice and Bob's input from a product distribution and then adding a sifting
step, as usually done in QKD protocols. It follows from our proof technique that making Ti public
as we do does not compromise the security of the protocol.
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204 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

Protocol 5.1 CHSH-based DIQKD protocol.

Arguments:
D -- untrusted device of two components that can play CHSH repeatedly
n \in N+ -- number of rounds
\gamma \in (0, 1] -- expected fraction of test rounds
\omega exp -- expected winning probability in an honest (perhaps noisy) implemen-

tation
\delta est \in (0, 1) -- width of the statistical confidence interval for the estimation test
EC -- error correction protocol which leaks leakEC bits and has error probability

\varepsilon EC

PA -- privacy amplification protocol with error probability \varepsilon PA

1: For every round i \in [n] do steps 2--4:
2: Alice and Bob choose a random Ti \in \{ 0, 1\} such that Pr(Ti = 1) = \gamma .
3: If Ti = 0, Alice and Bob choose (Xi, Yi) = (0, 2) and otherwise Xi, Yi \in \{ 0, 1\} 

uniformly at random.
4: Alice and Bob use D with Xi, Yi and record their outputs as Ai and \~Bi,

respectively.

5: Error correction: Alice and Bob apply the error correction protocol EC, com-
municating O in the process. If EC aborts, they abort the protocol. Otherwise,
they obtain raw keys denoted by KA and KB .

6: Parameter estimation: Bob sets Ci = wCHSH

\bigl( 
KBi, \~Bi, Xi, Yi

\bigr) 
for the test

rounds and Ci =\bot otherwise using \~B and KB . He aborts if
\sum 

j Cj <
(\omega exp\gamma  - \delta est) \cdot n;.

7: Privacy amplification: Alice and Bob apply the privacy amplification protocol
PA on KA and KB to create their final keys \~KA and \~KB of length \ell as defined in
(5.4).

keys \~KA and \~KB of length \ell , which are close to ideal keys, i.e., uniformly random and
independent of the adversary's knowledge.

For simplicity, we use universal hashing [63] as the privacy amplification protocol
in the analysis below. Any other quantum-proof strong extractor, e.g., Trevisan's
extractor [25], can be used for this task, and the analysis can be easily adapted.

The secrecy of the final key depends only on the privacy amplification protocol
used and the value of H\varepsilon s

min(A| XYTOE), evaluated on the state at the end of the
protocol, conditioned on not aborting. For universal hashing, for every \varepsilon PA, \varepsilon s \in (0, 1)
a secure key of maximal length

(5.3) \ell = H\varepsilon s
min(A| XYTOE) - 2 log

1

\varepsilon PA

is produced with probability23 at least 1 - \varepsilon PA  - \varepsilon s.
The main theorem of this section is the following security result for Protocol 5.1.

23\varepsilon PA is the error probability of the extractor when it is applied on a normalized state satisfying
the relevant min-entropy bound. For universal hashing, when only a bound on the smooth min-
entropy is given, the smoothing parameter \varepsilon s should be added to the error \varepsilon PA. When working with
other extractors, one should adapt the parameters accordingly; see [7, section 4.3].
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 205

Theorem 5.1. The DIQKD protocol given in Protocol 5.1 is (\varepsilon sQKD, \varepsilon 
c
QKD, \ell )-

secure according to Definition 2.3, with \varepsilon sQKD \leq \varepsilon EC + \varepsilon PA + \varepsilon s + \varepsilon EA, \varepsilon cQKD \leq 
\varepsilon cEC + \varepsilon cEA + \varepsilon EC, and

\ell = n \cdot \eta opt (\varepsilon s/4, \varepsilon EA + \varepsilon EC) - leakEC  - 3 log
\Bigl( 
1 - 

\sqrt{} 
1 - (\varepsilon s/4)2

\Bigr) 
 - \gamma n - 

\surd 
n2 log 7

\sqrt{} 
1 - 2 log (\varepsilon s/4 \cdot (\varepsilon EA + \varepsilon EC)) - 2 log

\bigl( 
\varepsilon  - 1
PA

\bigr) 
,

(5.4)

where \eta opt is specified in (4.1).

In section 5.5, we plot the resulting key rates, \ell /n, for different choices of param-
eters.

Theorem 5.1 follows by combining Lemmas 5.2 and 5.4, which we prove in the
following sections.

5.2. The honest implementation. The honest (but possibly noisy) imple-
mentation of the protocol is one where the device D performs in every round i of
the protocol the measurements \scrM ai

xi
\otimes \scrM bi

yi
on Alice and Bob's state \rho QAQB

. The
state and measurements are such that the winning probability achieved in the CHSH
game in a single round is \omega exp.

24 For the measurements (Xi, Yi) = (0, 2), we denote
the quantum bit error rate, i.e., the probability that Ai \not = Bi while using these mea-
surements, by Q. Thus, in the honest case we assume the device D behaves in an
i.i.d. manner (in particular, an i.i.d. noise model for the quantum channels used in
the protocol is assumed): it is initialized in an i.i.d. bipartite state, \rho \otimes n

QAQB
, on which

it makes i.i.d. measurements.
As an example, one possible realization of such an implementation is the following:

Alice and Bob share the two-qubit Werner state \rho QAQB
= (1  - \nu ) | \phi +\rangle \langle \phi +| + \nu I/4

for | \Phi +\rangle = 1/
\surd 
2 (| 00\rangle + | 11\rangle ) and \nu \in [0, 1]. The state \rho QAQB

arises, e.g., from the
state | \Phi +\rangle after going through a depolarization channel. For every i \in [n], Alice's
measurements Xi = 0 and Xi = 1 correspond to \sigma z and \sigma x, respectively, and Bob's
measurements Yi = 0, Yi = 1, and Yi = 2 correspond to \sigma z+\sigma x\surd 

2
, \sigma z - \sigma x\surd 

2
and \sigma z,

respectively. The winning probability in the CHSH game (restricted toXi, Yi \in \{ 0, 1\} )
using these measurements on \rho QAQB

is \omega exp = 2+
\surd 
2(1 - \nu )
4 and Q = \nu 

2 .

5.3. Completeness. The completeness of the protocol follows from the honest
i.i.d. implementation described in section 5.2 and the completeness of the entropy
accumulation protocol as shown in section 3.2.

Lemma 5.2. Protocol 5.1 is complete with completeness error \varepsilon cQKD \leq \varepsilon cEC+\varepsilon cEA+
\varepsilon EC. That is, the probability that the protocol aborts for an honest implementation of
the device D is at most \varepsilon cQKD.

Proof. There are two steps at which Protocol 5.1 may abort: after the error
correction (step 5) or in the Bell violation estimation (step 6). By the union bound,
the total probability of aborting is at most the probability of aborting in each of these
steps. Using this and (5.2), we get

\varepsilon cQKD \leq \varepsilon cEC + \varepsilon cPE \leq \varepsilon cEC + \varepsilon cEA + \varepsilon EC .

24Note that in our notation, the noise that affects the winning probability in the CHSH game is
already included in \omega exp.
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206 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

5.4. Soundness. To establish soundness, first note that by definition, as long
as the protocol does not abort, it produces a key of length \ell . Therefore, it remains to
verify correctness, which depends on the error correction step, and security, which is
based on the privacy amplification step. To prove security, we start with Lemma 5.3,
in which we assume that the error correction step is successful. We then use it to
prove soundness in Lemma 5.4.

Let \~\Omega denote the event of Protocol 5.1 not aborting and the EC protocol being
successful, and let \~\rho \bfA \~\bfB \bfX \bfY \bfT OE| \~\Omega be the state at the end of the protocol, conditioned
on this event.

The success of the privacy amplification step is dependent on the min-entropy
H\varepsilon s

min(A| XYTOE)\~\rho | \~\Omega 
being sufficiently large. The following lemma connects this

quantity to H
\varepsilon s
4

min(AB| XYTE)\rho | \Omega , on which a lower bound is provided by Corol-
lary 4.2.

Lemma 5.3. For any device D, let \~\rho be the state generated in Protocol 5.1 right
before the privacy amplification step, step 7. Let \~\rho | \~\Omega be the state conditioned on not
aborting the protocol and success of the EC protocol. Then, for any \varepsilon EA, \varepsilon EC, \varepsilon s \in 
(0, 1), either the protocol aborts with probability greater than 1 - \varepsilon EA  - \varepsilon EC or

H\varepsilon s
min (A| XYTOE)\~\rho | \~\Omega 

\geq n \cdot \eta opt (\varepsilon s/4, \varepsilon EA + \varepsilon EC) - leakEC

 - 3 log
\Bigl( 
1 - 

\sqrt{} 
1 - (\varepsilon s/4)2

\Bigr) 
 - \gamma n

 - 
\surd 
n2 log 7

\sqrt{} 
1 - 2 log (\varepsilon s/4 \cdot (\varepsilon EA + \varepsilon EC)) .

(5.5)

Proof. Consider the following events:
1. \Omega : the event of not aborting in the entropy accumulation protocol, Proto-

col 3.1. This happens when the Bell violation, calculated using Alice and
Bob's outputs (and inputs), is sufficiently high.

2. \^\Omega : Suppose Alice and Bob run Protocol 3.1, and then execute the EC proto-
col. The event \^\Omega is defined by \Omega and KB = A.

3. \~\Omega : the event of not aborting the DIQKD protocol, Protocol 5.1, and KB = A.
The state \rho | \^\Omega then denotes the state at the end of Protocol 3.1 conditioned on \^\Omega .

As we are only interested in the case where the EC protocol outputs the correct
guess of Alice's bits, that is, KB = A (which happens with probability 1 - \varepsilon EC), we
have \~\rho \bfA \bfX \bfY \bfT E| \~\Omega = \rho \bfA \bfX \bfY \bfT E| \^\Omega (note that \~B and B were traced out from \~\rho and \rho ,

respectively). Hence,

(5.6) H\varepsilon s
min (A| XYTE)\~\rho | \~\Omega 

= H\varepsilon s
min (A| XYTE)\rho | \^\Omega 

.

Using the chain rule given in [73, Lemma 6.8], together with (5.6), we get that

H\varepsilon s
min (A| XYTOE)\~\rho | \~\Omega 

\geq H\varepsilon s
min (A| XYTE)\~\rho | \~\Omega 

 - leakEC

= H\varepsilon s
min (A| XYTE)\rho | \^\Omega 

 - leakEC .(5.7)

In order for one to apply Corollary 4.2, it remains to relate H\varepsilon s
min (A| XYTE)\rho | \^\Omega 
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 207

to H
\varepsilon \prime s
min (AB| XYTE)\rho | \^\Omega 

for some \varepsilon \prime s. For this, we first write

H\varepsilon s
min (A| XYTE)\rho | \^\Omega 

\geq H
\varepsilon s
4

min (AB| XYTE)\rho | \^\Omega 
 - H

\varepsilon s
4

max (B| AXYTE)\rho | \^\Omega 

 - 3 log
\Bigl( 
1 - 

\sqrt{} 
1 - (\varepsilon s/4)2

\Bigr) 
\geq H

\varepsilon s
4

min (AB| XYTE)\rho | \^\Omega 
 - H

\varepsilon s
4

max (B| TE)\rho | \^\Omega 

 - 3 log
\Bigl( 
1 - 

\sqrt{} 
1 - (\varepsilon s/4)2

\Bigr) 
,

where the first inequality is due to the chain rule [73, equation (6.57)] and the second
is due to strong subadditivity of the smooth max-entropy.

One can now apply the EAT to upper bound H
\varepsilon s
4

max (B| TE)\rho | \^\Omega 
in the following

way. We use Theorem 2.7 with the replacements AB \rightarrow B, I \rightarrow T, E \rightarrow E. The
Markov conditions B1,...,i - 1 \updownarrow T1,...,i - 1E \updownarrow Ti then trivially hold, and the condition
on the max-tradeoff function reads as

fmax(p) \geq sup
\sigma Ri - 1R\prime :\scrN i(\sigma )

H (Bi| TiR
\prime )\scrN i(\sigma )

.

By the definition of the EAT channels \{ \scrN i\} , Bi \not =\bot only for Ti = 1, which happens
with probability \gamma . Hence, for any state \sigma Ri - 1R\prime , we have

H (Bi| TiR
\prime )\scrN i(\sigma )

\leq H (Bi| Ti)\scrN i(\sigma )
\leq \gamma 

and the max-tradeoff function is simply fmax(p) = \gamma for any p (and thus \| \triangledown fmax\| \infty =
0). Applying25 Theorem 2.7 with this choice of fmax, we get that

(5.8) H
\varepsilon s
4

max (B| TE)\rho | \^\Omega 
< \gamma n+

\surd 
n2 log 7

\sqrt{} 
1 - 2 log (\varepsilon s/4 \cdot (\varepsilon EA + \varepsilon EC)) .

Combining (5.7) with the above inequalities, we get that

H\varepsilon s
min (A| XYTOE)\~\rho | \~\Omega 

\geq H
\varepsilon s
4

min (AB| XYTE)\rho | \^\Omega 
 - leakEC  - 3 log

\Bigl( 
1 - 

\sqrt{} 
1 - (\varepsilon s/4)2

\Bigr) 
 - \gamma n - 

\surd 
n2 log 7

\sqrt{} 
1 - 2 log (\varepsilon s/4 \cdot (\varepsilon EA + \varepsilon EC)) .

Finally, note that by applying the EAT on \rho | \^\Omega , as in Corollary 4.2, we have that

either 1 - Pr(\^\Omega ) \geq 1 - \varepsilon EA  - \varepsilon EC or

H
\varepsilon s
4

min(AB| XYTE)\rho | \^\Omega 
> n \cdot \eta opt (\varepsilon s/4, \varepsilon EA + \varepsilon EC) .

The last two equations give us the desired bound onH\varepsilon s
min (A| XYTOE)\~\rho | \~\Omega 

: either

the protocol aborts with probability greater than 1 - \varepsilon EA  - \varepsilon EC or

H\varepsilon s
min (A| XYTOE)\~\rho | \~\Omega 

\geq n \cdot \eta opt (\varepsilon s/4, \varepsilon EA + \varepsilon EC) - leakEC

 - 3 log
\Bigl( 
1 - 

\sqrt{} 
1 - (\varepsilon s/4)2

\Bigr) 
 - \gamma n - 

\surd 
n2 log 7

\sqrt{} 
1 - 2 log (\varepsilon s/4 \cdot (\varepsilon EA + \varepsilon EC)) .

25Here a slightly more general version of the EAT than the one given in this paper is needed, in
which the event \Omega can be defined via A,B,X, Y and not only C; see [28] for the details.
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208 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

Using Lemma 5.3, we prove that Protocol 5.1 is sound.

Lemma 5.4. For any device D, let \~\rho be the state generated using Protocol 5.1.
Then either the protocol aborts with probability greater than 1  - \varepsilon EA  - \varepsilon EC or it is
(\varepsilon EC+\varepsilon PA+\varepsilon s)-correct-and-secret while producing keys of length \ell , as defined in (5.4).

Proof. Denote all the classical public communication during the protocol by J =

XYTOS, where S is the seed used in the privacy amplification protocol PA. Let
\approx 
\Omega 

denote the event of not aborting Protocol 5.1, and let \~\rho 
\~KA

\~KBJE| 
\approx 
\Omega 
be the final state

of Alice, Bob, and Eve at the end of the protocol, conditioned on not aborting.
We consider two cases. First, assume that the EC protocol was not successful

(but did not abort). Then Alice and Bob's final keys might not be identical. This
happens with probability at most \varepsilon EC.

Otherwise, assume the EC protocol was successful, i.e., KB = A. In that case,
Alice and Bob's keys must be identical also after the final privacy amplification step,
that is, conditioned on KB = A, \~KA = \~KB .

We continue to show that in this case the key is also secret. The secrecy depends
only on the privacy amplification step, and for universal hashing a secure key is
produced as long as (5.3) holds. Hence, a uniform and independent key of length \ell as
in (5.4) is produced by the privacy amplification step unless the smooth min-entropy
is not high enough (i.e., the bound in (5.5) does not hold) or the privacy amplification
protocol was not successful, which happens with probability at most \varepsilon PA + \varepsilon s.

According to Lemma 5.3, either the protocol aborts with probability greater than
1 - \varepsilon EA  - \varepsilon EC or the entropy is sufficiently high for us to have

\| \~\rho 
\~KAJE| 

\approx 
\Omega 
 - \rho Ul

\otimes \~\rho JE\| 1 \leq \varepsilon PA + \varepsilon s .

Combining both cases above, we get that Protocol 5.1 is sound (that is, it produces
identical and secret keys of length \ell for Alice and Bob) with soundness error at most
\varepsilon EC + \varepsilon PA + \varepsilon s.

5.5. Key rate analysis. Theorem 5.1 establishes a relation between the length
\ell of the secure key produced by our protocol and the different error terms. As this
relation, given in (5.4), is somewhat hard to visualize, we analyze the key rate r = \ell /n
for some specific choices of parameters and compare it to the key rates achieved
in device-dependent QKD with finite resources [68, 69] and DIQKD with infinite
resources and a restricted set of attacks [57].

The key rate depends on the amount of leakage of information due to the error
correction step, which in turn depends on the honest implementation of the protocol.
We use the honest i.i.d. implementation described in section 5.2 and assume that
in the honest case the state of each round is the two-qubit Werner state \rho QAQB

=
(1 - \nu ) | \phi +\rangle \langle \phi +| + \nu I/4 (and the measurements are as described in section 5.2). The
quantum bit error rate is then Q = \nu 

2 , and the expected winning probability is \omega exp =
2+

\surd 
2(1 - 2Q)
4 .
We emphasize that this is an assumption regarding the honest implementation

and it does not in any way restrict the actions of the adversary (and, in particular,
the types of imperfections in the device). Furthermore, the analysis done below can
be adapted to any other honest implementation of interest.

5.5.1. Leakage due to error correction. To compare the rates, we first need
to explicitly upper bound the leakage of information due to the error correction pro-
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 209

tocol, leakEC. As mentioned before, this can be done by evaluating H
\varepsilon \prime EC
0 (A| \~BXYT)

on Alice and Bob's state in an honest i.i.d. implementation of the protocol, described
in section 5.2.

For this, we first use the following relation between H\varepsilon 
0 and H\varepsilon \prime 

max [76, Lemma
18]:

H
\varepsilon \prime EC
0 (A| \~BXYT) \leq H

\varepsilon \prime EC
2

max

\Bigl( 
A| \~BXYT

\Bigr) 
+ log

\bigl( 
8/\varepsilon \prime 2EC + 2/ (2 - \varepsilon \prime EC)

\bigr) 
.

The nonasymptotic version of the asymptotic equipartition property [74, Theorem
9] (see also [72, Result 5]) tells us that

H
\varepsilon \prime EC
2

max

\Bigl( 
A| \~BXYT

\Bigr) 
\leq nH(Ai| \~BiXiYiTi) +

\surd 
n\delta (\varepsilon \prime EC, \tau )

for \tau = 2
\sqrt{} 
2Hmax(Ai| \~BiXiYiTi) + 1 and \delta (\varepsilon \prime EC, \tau ) = 4 log \tau 

\sqrt{} 
2 log

\bigl( 
8/\varepsilon \prime 2EC

\bigr) 
.

For the honest implementation of Protocol 5.1, Hmax(Ai| \~BiXiYiTi) = 1 and

H(Ai| \~BiXiYiTi) = Pr(Ti = 0) \cdot H(Ai| \~BiXiYi, Ti = 0)

+Pr(Ti = 1) \cdot H(Ai| \~BiXiYi, Ti = 1)

= (1 - \gamma ) \cdot H(Ai| \~BiXiYi, Ti = 0)

+ \gamma \cdot H(Ai| \~BiXiYi, Ti = 1)

= (1 - \gamma )h(Q) + \gamma h(\omega exp) ,

where the first equality follows from the definition of conditional entropy and the
second from the way Ti is chosen in Protocol 5.1. The last equality holds since for
generation rounds the error rate (i.e., the probability that Ai and \~Bi differ) in the
honest case is Q and for test rounds given \~Bi, Xi, and Yi Bob can guess Ai correctly
with probability \omega exp.

We thus have

H
\varepsilon \prime EC
0

\Bigl( 
A| \~BXYT

\Bigr) 
\leq n [(1 - \gamma )h(Q) + \gamma h(\omega exp)]

+
\surd 
n4 log

\Bigl( 
2
\surd 
2 + 1

\Bigr) \sqrt{} 
2 log

\bigl( 
8/\varepsilon \prime 2EC

\bigr) 
+ log

\bigl( 
8/\varepsilon \prime 2EC + 2/ (2 - \varepsilon \prime EC)

\bigr) 
.

Plugging this into (5.1), we get

leakEC \leq n [(1 - \gamma )h(Q) + \gamma h(\omega exp)] +
\surd 
n4 log

\Bigl( 
2
\surd 
2 + 1

\Bigr) \sqrt{} 
2 log

\bigl( 
8/\varepsilon \prime 2EC

\bigr) 
+ log

\bigl( 
8/\varepsilon \prime 2EC + 2/ (2 - \varepsilon \prime EC)

\bigr) 
+ log

\biggl( 
1

\varepsilon EC

\biggr) 
.

(5.9)

5.5.2. Key rate curves. In Appendix B, a slightly modified protocol is con-
sidered in which, instead of fixing the number of rounds in the protocol, only the
expected number of rounds is fixed.

The completeness and soundness proofs follow along the same lines as the proofs
above, as detailed in Appendix B. The analysis presented in the appendix leads to
improved key rates for the modified protocol and are the ones presented here.26

26The key rate curves for a fixed number of rounds n have the same shape as the curves presented
here but require more signals to achieve the same rates (the difference is roughly two orders of
magnitude).
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210 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

In Figure 5, the expected key rate r = \ell /\=n is plotted as a function of the quan-
tum bit error rate Q for several values of the expected number of rounds \=n. For
\=n = 1015, the curve already essentially coincides with the key rate achieved in the
asymptotic i.i.d. case, that is, when restricting the adversary to collective attacks [57,
equation (12)] (see also Figure 2 therein). As the key rate for the asymptotic i.i.d.
case was shown to be optimal in [57] (for practically the same protocol), it acts as
an upper bound on the key rate and the amount of tolerable noise for the general
case considered in this work. Hence, for large enough number of rounds our key rate
becomes optimal and the protocol can tolerate up to the maximal error rate Q = 7.1\%.

In an asymptotic analysis (i.e., with infinite resources \=n \rightarrow \infty ), it is well under-
stood that the soundness and completeness errors \varepsilon sQKD, \varepsilon 

c
QKD should tend to zero

as \=n increases. However, in the nonasymptotic scenario considered here these errors
are always finite. We therefore fix some values for them which are considered to be
realistic and relevant for actual applications. We choose the parameters such that the
security parameters are at least as good (and, in general, even better) as in [68], such
that a fair comparison can be made. All other parameters are chosen in a consistent
way while (roughly) optimizing the key rate.

In Figure 6, r is plotted as a function of \=n for several values of Q. As can be
seen from the figure, the achieved rates are significantly higher than those achieved in
previous works. Moreover, they are practically comparable to the key rates achieved
in device-dependent QKD (see Figure 1 in [68]). The main difference between the
curves for the device-dependent case and the independent one is the minimal value
of \=n which is required for a positive key rate. (That is, for the protocols considered
in [68], one can get a positive key rate with fewer rounds.) It is possible that by
further optimizing the parameters a positive key rate can also be achieved in our
setting in the regime \=n = 104  - 106 for the different error rates.

6. Randomness expansion. We show how the entropy accumulation protocol
can be used to perform randomness expansion. This can be achieved based on any
nonlocal game, for which one is able to prove a good bound in (3.4). For concreteness,
we focus on the CHSH game, for which an explicit bound is provided by Corollary 4.2.
Although the protocol can be used to achieve larger expansion factors, we give specific
bounds that optimize the linear output rate, under the assumption that a small linear
number of uniformly random bits is available to the experimenter for the execution
of the protocol.

In order to minimize the amount of randomness required to execute the protocol,
we adapt the main entropy accumulation protocol, Protocol 3.1, by deterministically
choosing inputs in the generation rounds from \scrX g = \{ 0\} and \scrY g = \{ 0\} . In particular,
there is no use for the input 2 to the B device, and no randomness is required for
the generation rounds.27 Aside from the last step of randomness amplification, the
remainder of the protocol is essentially the same as Protocol 3.1 (in its instantiation
with the CHSH game considered in section 4). The complete protocol is described as
Protocol 6.1.

Corollary 4.2 provides a lower bound on the min-entropy generated by the pro-
tocol. Given that we are concerned here not only with generating randomness, but
also with expanding the amount of randomness initially available to users of the pro-
tocol, we now evaluate the total number of random bits that is needed to execute

27This requires both users to know which rounds are selected as generation rounds, i.e., to share
the RV Ti. For the purposes of randomness expansion, this does not even require communication,
as we may assume the parties are co-located.
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Fig. 5. The expected key rate r = \ell /\=n as a function of the quantum bit error rate Q for several
values of the expected number of rounds \=n. For \=n = 1015, the curve essentially coincides with the
curve for the i.i.d. asymptotic case [57, equation (12)]. The following values for the error terms
were chosen: \varepsilon EC = 10 - 10, \varepsilon sQKD = 10 - 5, and \varepsilon cQKD = 10 - 2.
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Fig. 6. The expected key rate r = \ell /\=n as a function of the expected number of rounds \=n for
several values of the quantum bit error rate Q. For Q = 0.5\%, 2.5\%, and 5\%, the achieved key rates
are approximately r = 87\%, 53\%, and 22\%, respectively. The following values for the error terms
were chosen: \varepsilon EC = 10 - 10, \varepsilon sQKD = 10 - 5, and \varepsilon cQKD = 10 - 2.
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212 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

Protocol 6.1 Randomness expansion protocol.

Arguments:
G -- CHSH game restricted to \scrX t = \scrY t = \{ 0, 1\} .
D -- untrusted device of two components that can play G repeatedly
n \in N+ -- number of rounds
\gamma \in (0, 1] -- expected fraction of test rounds
\omega exp -- expected winning probability in G for an honest (perhaps noisy) imple-

mentation
\delta est \in (0, 1) -- width of the statistical confidence interval for the estimation test

1: For every round i \in [n], do steps 2--5:
2: Bob chooses a random bit Ti \in \{ 0, 1\} such that Pr(Ti = 1) = \gamma .
3: If Ti = 0, Alice and Bob choose (Xi, Yi) = (0, 0). If Ti = 1, they choose

uniformly random inputs (Xi, Yi) \in \scrX t \times \scrY t.
4: Alice and Bob use D with Xi, Yi and record their outputs as Ai and Bi, respec-

tively.
5: If Ti = 1, they set Ci = w(Ai, Bi, Xi, Yi).
6: Alice and Bob abort if

\sum 
j Cj < (\omega exp\gamma  - \delta est) \cdot n.

7: They return Ext(AB,S), where Ext is the extractor from Lemma 6.3 and S is a
uniformly random seed.

Protocol 6.1.
Input randomness. Random bits are required to select which rounds are genera-

tion rounds, i.e., the RV T, to select inputs to the devices in the testing rounds, i.e.,
those for which Ti = 0, and to select the seed for the extractor in step 7.

The RVs Ti are chosen independently according to a biased Bernoulli(\gamma ) distri-
bution. The following lemma shows that approximately 8h(\gamma )n uniformly random
bits are sufficient to generate the Ti, provided one allows for the possibility of a small
deviation error.

Lemma 6.1. Let \gamma > 0. There is an efficient procedure such that for any integer
n, given r = 8h(\gamma )n uniformly random bits as inputs, the procedure either aborts, with
probability at most \varepsilon SA = exp( - \Omega (\gamma 3 log - 2 \gamma n)), or outputs n bits T1, . . . , Tn whose
distribution is within statistical distance at most \varepsilon SA of n i.i.d. Bernoulli(\gamma ) RVs.

Proof. It is well known that using the interval algorithm [41] it is possible to
sample exactly from m i.i.d. Bernoulli(\gamma ) RVs using an expected number of random
bits at most h(\gamma )m+2; furthermore, the maximum number of random bits needed is
at most Cm log \gamma  - 1 for some constant C.

In order to obtain a bound on the maximum number of random bits used that
holds with high probability, let \alpha = h(\gamma ) and partition \{ 1, . . . , n\} into at most t =
\lceil \alpha n\rceil chunks of m = \lceil 1/\alpha \rceil consecutive integers each. Suppose we repeat the interval
algorithm for each chunk. Let Ni be the number of uniform bits used to generate
the Tj associated with the ith chunk. Then, by the above, E[Ni] \leq h(\gamma )m + 2 and
Ni \leq Cm log \gamma  - 1. Applying the Hoeffding inequality,

Pr

\Biggl( 
t\sum 

i=1

Ni > 2(h(\gamma )m+ 2)t

\Biggr) 
\leq e

 - C\prime (h(\gamma )m+2)2

m2 log2 \gamma  - 1 t \leq e
 - C\prime \prime \gamma 3

log2 \gamma  - 1 n

for some constants C \prime , C \prime \prime > 0 and given our choice of \alpha . Using mt \leq 2n and t \leq n
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 213

gives the claimed bound.

Remark 6.2. If one is willing to settle for a bound on the number of uniform bits
used in expectation, then using the procedure from [41] it is possible to exactly sample
n i.i.d. Bernoulli(\gamma ) RVs using an expected number of random bits at most h(\gamma )n+2.

It remains to account for the random bits required to generate inputs in the
testing rounds, for which Ti = 0. By Hoeffding's inequality, there are at most 2\gamma n
such rounds but with probability exp( - \Omega (\gamma 2n)) \leq \varepsilon SA for large enough n. Together
with Lemma 6.1 we conclude that 10\gamma n uniformly random bits are sufficient to execute
the protocol with a probability of success (up to but not including step 6) at least

1 - e - 
\~\Omega (\gamma 3)n. We also note that if one is only concerned with the expected number of

random bits used, then (h(\gamma ) + \gamma )n+ 2 bits are sufficient.
Extraction. In the last step of the protocol, step 7, the user applies a quantum-

proof extractor to AB in order to produce a random string that is close to being
uniformly distributed. This step requires the use of an additional seed S of uniformly
random bits. We use the following construction, based on Trevisan's extractor, de-
signed to maximize the output length while not using too much seed.

Lemma 6.3. For any \delta > 0, there is a c = c(\delta ) > 0 such that the following
holds: For all large enough integers n and any k \geq \delta n, there is an efficient procedure
Ext : \{ 0, 1\} 2n \times \{ 0, 1\} d \rightarrow \{ 0, 1\} m such that d = \lceil \delta n\rceil and m = \lceil k  - 9 log k\rceil , and is
such that for \varepsilon EX = exp( - c(n/ log n)1/2) and any classical-quantum state \rho \bfA E such
that H\varepsilon EX

min (A| E)\rho \geq k it holds that

\| \rho Ext(\bfA ,\bfS )\bfS E  - \rho Um \otimes \rho Ud
\otimes \rho E\| 1 \leq 2\varepsilon EX ,

where S \in \{ 0, 1\} d is a uniformly distributed random seed and \rho Um
, \rho Ud

are totally
mixed states on m and d bits, respectively.

Proof. We use the construction given in [25, Corollary 5.1]. To get the parameters
stated here, we note that provided c is chosen small enough with respect to \delta our choice
of \varepsilon EX ensures that the seed length d = O(log2(n/\varepsilon EX) logm) can be made smaller
than \delta n. The conclusion on the trace distance follows from the guarantee of strong
extractor given by [25, Corollary 5.1] using an argument similar to the proof of [7,
Lemma 17].

We state the results of the above discussions as the following theorem, stating the
guarantees of the randomness expansion protocol.

Theorem 6.4. Let \gamma , \delta > 0. Let \varepsilon EX be as in Lemma 6.3. Then, for all large
enough n, \varepsilon EA \in (0, 1), and \varepsilon s such that \varepsilon SA < \varepsilon s + \varepsilon SA \leq \varepsilon EX, Protocol 3.1 is an
(\varepsilon cEA+\varepsilon SA, 2\varepsilon EX)-secure [(8h(\gamma )+\delta )n] \rightarrow [n \cdot \eta opt(\varepsilon s - \varepsilon SA, \varepsilon EA) - 9 log n] randomness
expansion protocol. That is, either Protocol 3.1 aborts with probability greater than
\varepsilon EA or it generates a string of length m \geq n \cdot \eta opt(\varepsilon s, \varepsilon EA)  - 9 log n (where \eta opt is
defined in (4.1)) such that

\| \rho ZRE  - \rho Um
\otimes \rho RE\| 1 \leq 2\varepsilon EX + \varepsilon SA ,

where R is a register holding all the initial random bits used in the protocol (including
the seed S).
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214 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

Proof. Let D be any device and \rho the state (as defined in (3.1)) generated right
before step 6 of Protocol 6.1. Let \Omega (as defined in (3.2)) be the event that the protocol
does not abort, and \rho | \Omega be the state conditioned on \Omega . Then, applying Corollary 4.2,
we obtain that for any \varepsilon EA, \varepsilon 

\prime 
s \in (0, 1), either the protocol aborts with probability

greater than 1 - \varepsilon EA or

(6.1) H
\varepsilon \prime s+\varepsilon SA

min (AB| XYTE)\rho | \Omega 
> n \cdot \eta opt(\varepsilon \prime s, \varepsilon EA) ,

where \eta opt is as defined in (4.1) and the additional smoothness parameter \varepsilon SA accounts
for the error in the verifier's input sampling procedure, as described in Lemma 6.1.28

Given the bound equation (6.1), the guarantee on m claimed in the theorem follows
from Lemma 6.3.

Finally, the completeness of the protocol follows directly from the completeness
of the entropy accumulation protocol, Protocol 3.1, as stated in Lemma 3.1, and the
verifier's input sampling procedure, described in Lemma 6.1.

Assuming a choice \delta = \gamma , the number of random bits required in the protocol
scales linearly, roughly as \sim 9\gamma n.

For \gamma \rightarrow 1, which corresponds to randomness generation (also called randomness
certification, i.e., the guarantee of ``fresh"" randomness independent of the inputs),
the values of \eta opt plotted in Figure 3 give a good idea of the rate of randomness
generation that can be achieved from Protocol 6.1 for different choices of the security
parameters. The rate is to be compared to the rate that was shown to be achievable
for randomness expansion in the case of classical adversaries only in [58, Figure 2];
see also [59]. Our result, in contrast, holds against quantum adversaries. The rate is
much better than the ones obtained in [77, 53].

For randomness expansion, one would select a small value of \gamma . If \gamma is a small
constant, then Theorem 6.4 guarantees a constant expansion factor. One may wish
to go further, by selecting a \gamma that scales sublinearly, polynomially, or even poly-
logarithmically, in the number of rounds (e.g., to achieve exponential expansion). It
is possible to adapt our results to guarantee a linear production of randomness even
for such parameters by suitably adapting Protocol 3.1 so that rounds are grouped
in blocks, as in the modification of the entropy accumulation protocol described in
Appendix B.

7. Open questions. Several questions are left open:
1. Our results yield essentially optimal values for the leading- and second-order

constants, c1 and c2, that govern the achievable rate curves. As loophole-free
Bell tests (a necessity for DI cryptography) are finally being realized [43, 70,
37], it becomes increasingly relevant to achieve the best possible dependence of
the rate curves on the number of rounds n, even for very small values of n. As
can be seen from Figures 3 and 5, our rate curves approach (and essentially
coincide) with the optimal curves as the number of rounds increases. One
thing that can perhaps still be further optimized is the dependency on the
number of rounds or, in other words, how fast the curves approach the optimal
curve. The explicit dependency on n given in (5.4) is already close to optimal,
but the numerical analysis used to plot the curves can be made somewhat
better for the range of n = 104 - 106. Although this seems like a minor issue,
it can make actual implementations more feasible.

28The log(13) term in the definition of \eta in (4.1) could be replaced by a log(9) to account for the
fact that here dBi

= 2, instead of dBi
= 3 in section 4.
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2. Are there similar protocols, based on a different Bell inequality, that can lead
to better entropy rates? To apply our proof to other Bell inequalities, one
should find a good bound on the min-tradeoff function, as done in (4.7) for
the CHSH inequality. For many Bell inequalities, such bounds are known
but for the min-entropy instead of the von Neumann entropy. In most cases,
using a bound on the min-entropy will result in far from optimal rate curves.
Therefore, to adapt our protocol to other Bell inequalities, one should proba-
bly bound the min-tradeoff function using the von Neumann entropy directly.
Unfortunately, we do not know of any general technique to achieve such tight
bounds.

3. Are there other protocols, e.g., with two-way classical postprocessing, which
achieve better key rates? The optimality of our key rates is only with respect
to the structure of the considered protocol.

Appendix A. Summary of parameters, constants, and variables.

Table A.1
Parameters and constants used throughout the paper.

Symbol Meaning Relation to other parameters

n \in N+ number of rounds

\gamma \in (0, 1]
expected fraction of Bell violation
estimation rounds

\omega exp \in [0, 1]
expected winning probability in an honest
(perhaps noisy) implementation

\delta est \in (0, 1)
width of the statistical confidence interval
for the Bell violation estimation test

\varepsilon s smoothing parameter

\varepsilon cEA

completeness error of the entropy
accumulation protocol

given in (3.3)

\varepsilon EA
the error probability of the entropy
accumulation protocol

leakEC the leakage of the error correction protocol given in (5.1)

\varepsilon EC, \varepsilon 
\prime 
EC

error probabilities of the error correction
protocol

\varepsilon cEC

completeness error of the error correction
protocol

\varepsilon cEC = \varepsilon \prime EC + \varepsilon EC

\varepsilon cPE

completeness error of the parameter
estimation step

given in (5.2)

\varepsilon PA
error probability of the privacy amplification
protocol

given in (5.3)

\ell final key length in the DIQKD protocol given in (5.4)
\varepsilon cQKD completeness error of the DIQKD protocol \varepsilon cQKD \leq \varepsilon cEC + \varepsilon cEA + \varepsilon EC

\varepsilon sQKD soundness error of the DIQKD protocol \varepsilon sQKD \leq \varepsilon EC + \varepsilon PA + \varepsilon s

\varepsilon SA

error probability of the input sampling
procedure used in the randomness
expansion protocol

given in Lemma 6.1

\varepsilon EX

error probability of the extractor
used in the randomness expansion
protocol

given in Lemma 6.3
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216 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

Table A.2
RVs and quantum systems used throughout the paper.

RVs and systems Meaning

Xi \in \scrX Alice's input in round i \in [n]
Yi \in \scrY Bob's input in round i \in [n]
Ai \in \scrA Alice's output in round i \in [n]
Bi \in \scrB Bob's output in round i \in [n]

Ti \in \{ 0, 1\} 
indicator of the estimation test in round i:

Ti =

\Biggl\{ 
0, ith round is not a test round,

1, ith round is a test round.

Fi \in \{ 0, 1\} a random uniform bit for the symmetrization step
in round i \in [n]

Ci \in \{ \bot , 0, 1\} 

indicator of the correlation in the test rounds:

Ci =

\left\{     
\bot , Ti = 0,

0, Ti = 1 and the test fails

1, Ti = 1 and the test succeeds.

E register of Eve's quantum state

Ri

register of the (unknown) quantum state \rho iQAQB
of

Alice and Bob's devices after step i of the
protocol for i \in \{ 0\} \cup [n]

Appendix B. An improved dependency on the test probability \bfitgamma .
In this section, we show how the EAT can be used in a slightly different way than
what was done in the main text. This results in an entropy rate which has a better
dependency on the probability of a test round \gamma , compared to the entropy rate given
in (4.1) in section 4. The improved entropy rate derived here is the one used for
calculating the key rates of the DIQKD protocol in section 5.5.2.

B.1. Modified entropy accumulation protocol. We use a different entropy
accumulation protocol, given as Protocol B.1. In this modified protocol, instead of
considering each round separately we consider blocks of rounds. A block is defined
by a sequence of rounds: in each round, a test is carried out with probability \gamma (and
otherwise the round is a generation round). The block ends when a test round is
being performed and then the next block begins. If for smax rounds there was no test,
the block would end without performing a test and the next would begin. Thus, the
blocks can be of different lengths, but they all consist of at most smax rounds.

In this setting, instead of fixing the number of rounds n in the beginning of the
protocol, we fix the number of blocks m. The expected length of block is

\=s =
\sum 

s\in [smax]

\Bigl[ 
s(1 - \gamma )(s - 1)\gamma 

\Bigr] 
+ smax(1 - \gamma )smax =

1 - (1 - \gamma )smax

\gamma 

=
\sum 

s\in [smax]

\Bigl[ 
(1 - \gamma )(s - 1)

\Bigr] 
.(B.1)

The expected number of rounds is denoted by \=n = m \cdot \=s.
Compared to the main text, we now have an RV \~Cj \in \{ 0, 1,\bot \} for each block,

instead of each round. Alice and Bob set \~Cj to be 0 or 1, depending on the result of

the game in the block's test round (i.e., the last round of the block), or \~Cj =\bot if a
test round was not carried out in the block. By the definition of the blocks, we have
Pr[ \~Cj =\bot ] = (1 - \gamma )smax .

Note that the symmetrization step was dropped in Protocol B.1 just for simplicity,
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Protocol B.1 Modified entropy accumulation protocol.

Arguments:
G -- two-player nonlocal game
\scrX g,\scrX t \subset \scrX -- generation and test inputs for Alice
\scrY g,\scrY t \subset \scrY -- generation and test inputs for Bob
D -- untrusted device of (at least) two components that can play G repeatedly
m \in N+ -- number of blocks
smax \in N+ -- maximal length of a block
\gamma \in (0, 1] -- probability of a test round
\omega exp -- expected winning probability in G for an honest (perhaps noisy) imple-

mentation
\delta est \in (0, 1) -- width of the statistical confidence interval for the estimation test

1: For every block j \in [m], do steps 2--9:
2: Set i = 0 and Cj =\bot .
3: If i \leq smax:
4: Set i = i+ 1.
5: Alice and Bob choose Ti \in \{ 0, 1\} at random such that Pr(Ti = 1) = \gamma .
6: If Ti = 0, Alice and Bob choose inputs Xi \in \scrX g and Yi \in \scrY g, respectively. If

Ti = 1, they choose inputs Xi \in \scrX t and Yi \in \scrY t.
7: Alice and Bob use D with Xi, Yi and record their outputs as Ai and Bi,

respectively.
8: If Ti = 0, Bob updates Bi to Bi =\bot .
9: If Ti = 1, they set \~Cj = w (Ai, Bi, Xi, Yi) and i = smax + 1.

10: Alice and Bob abort if
\sum 

j\in [m]
\~Cj < [\omega exp (1 - (1 - \gamma )smax) - \delta est] \cdot m.

as it plays no role in the considered modification; it can (and should) be handled
exactly as done in section 4.

B.2. Modified min-tradeoff function. Below we apply the EAT on blocks of
outputs instead of single rounds directly. Let \scrM j denote the EAT channels defined
by the actions of steps 2--9 in Protocol B.1, combined with the quantum channels
that model the device's actions in those steps. It is easy to verify that \scrM j fulfil the
necessary conditions given in Definition 2.5.

We now construct a min-tradeoff function for \scrM j . Let \~p be a probability distri-
bution over \{ 0, 1,\bot \} . Our goal is to find Fmin such that

(B.2) \forall j \in [m], Fmin(\~p) \leq inf
\sigma Rj - 1R\prime :\scrM j(\sigma ) \~Cj

=\~p
H
\Bigl( 
\vec{}Aj

\vec{}Bj | \vec{}Xj
\vec{}Yj

\vec{}TjR
\prime 
\Bigr) 
\scrM j(\sigma )

,

where \vec{}Aj is a vector of varying length (but at most smax). We use Aj,i to denote

the ith entry of \vec{}Aj and Aj,i - 1
j,1 = Aj,1 . . . Aj,i - 1. Since we will only be interested

in the entropy of \vec{}Aj , we can also describe it as a vector of length smax which is
initialized to be all \bot . For every actual round being performed in the block, the value
of Aj,i is updated. Thus, the entries of \vec{}Aj which correspond to rounds which were
not performed do not contribute to the entropy. We use similar notation for the other
vectors of RVs.
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218 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

To lower bound the right-hand side of (B.2), we first use the chain rule

H
\Bigl( 
\vec{}Aj

\vec{}Bj | \vec{}Xj
\vec{}Yj

\vec{}TjR
\prime 
\Bigr) 
=

\sum 
i\in [smax]

H(Aj,iBj,i| \vec{}Xj
\vec{}Yj

\vec{}TjR
\prime Aj,i - 1

j,1 Bj,i - 1
j,1 ) .(B.3)

Next, for every i \in [smax],

H(Aj,iBj,i| \vec{}Xj
\vec{}Yj

\vec{}TjR
\prime Aj,i - 1

j,1 Bj,i - 1
j,1 )

= Pr[T j,i - 1
j,1 = \vec{}0]H(Aj,iBj,i| \vec{}Xj

\vec{}YjR
\prime Aj,i - 1

j,1 Bj,i - 1
j,1 T j,smax

j,i T j,i - 1
j,1 = \vec{}0)

+ Pr[T j,i - 1
j,1 \not = \vec{}0]H(Aj,iBj,i| \vec{}Xj

\vec{}YjR
\prime Aj,i - 1

j,1 Bj,i - 1
j,1 T j,smax

j,i T j,i - 1
j,1 \not = \vec{}0)

= (1 - \gamma )(i - 1)H(Aj,iBj,i| \vec{}Xj
\vec{}YjR

\prime Aj,i - 1
j,1 Bj,i - 1

j,1 T j,smax

j,i T j,i - 1
j,1 = \vec{}0)

since the entropy is not zero only if the ith round is being performed in the block,
i.e., if a test was not performed before that round. Plugging this into (B.3), we get

H
\Bigl( 
\vec{}Aj

\vec{}Bj | \vec{}Xj
\vec{}Yj

\vec{}TjR
\prime 
\Bigr) 

=
\sum 

i\in [smax]

(1 - \gamma )(i - 1)H(Aj,iBj,i| \vec{}Xj
\vec{}YjR

\prime Aj,i - 1
j,1 Bj,i - 1

j,1 T j,smax

j,i T j,i - 1
j,1 = \vec{}0) .

Each term in the sum can now be identified as the entropy of a single round. We
can therefore use the bound derived in the main text, as given in (4.6). For this,
we denote by \omega i the winning probability in the ith round (given that a test was not
performed before). Then it holds that
(B.4)

H
\Bigl( 
\vec{}Aj

\vec{}Bj | \vec{}Xj
\vec{}Yj

\vec{}TjR
\prime 
\Bigr) 
\geq 

\sum 
i\in [smax]

(1 - \gamma )(i - 1)

\biggl[ 
1 - h

\biggl( 
1

2
+

1

2

\sqrt{} 
16\omega i (\omega i  - 1) + 3

\biggr) \biggr] 
,

where, by the actions of the EAT channel \scrM j , the \omega i's must fulfil the constraint

(B.5) \~p(1) =
\sum 

i\in [smax]

\gamma (1 - \gamma )(i - 1)\omega i .

Note that, similarly to what was done in the main text, we only need to consider
\~p for which \~p(1)+ \~p(0) = 1 - (1 - \gamma )smax (otherwise the condition on the min-tradeoff
function is trivial, as the infimum is over an empty set).

To find the min-tradeoff function Fmin(\~p), we therefore need to minimize (B.4)
under the constraint of (B.5). The following lemma shows that the minimum is
achieved when all \omega i are equal.

Lemma B.1. The minimum of the function given on the right-hand side of (B.4)

over \omega i constrained by (B.5) is achieved for \omega \ast 
i = \~p(1)

1 - (1 - \gamma )smax for all i \in [smax].

Proof. Let \vec{}\omega = \omega 1, . . . , \omega smax and let

f(\vec{}\omega ) \equiv 
\sum 

i\in [smax]

(1 - \gamma )(i - 1)

\biggl[ 
1 - h

\biggl( 
1

2
+

1

2

\sqrt{} 
16\omega i (\omega i  - 1) + 3

\biggr) \biggr] 
,

g(\vec{}\omega ) \equiv 
\sum 

i\in [smax]

\gamma (1 - \gamma )(i - 1)\omega i  - \~p(1) .
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 219

Using the method of Lagrange multipliers, we should look for \vec{}\omega \ast such that g(\vec{}\omega \ast ) = 0
and \nabla f(\vec{}\omega \ast ) =  - \lambda \nabla g(\vec{}\omega \ast ) for some constant \lambda . \nabla f(\vec{}\omega \ast ) =  - \lambda \nabla g(\vec{}\omega \ast ) implies that for
any i,

(1 - \gamma )(i - 1) d

d\omega i

\biggl[ 
1 - h

\biggl( 
1

2
+

1

2

\sqrt{} 
16\omega i (\omega i  - 1) + 3

\biggr) \biggr] \bigm| \bigm| \bigm| 
\omega \ast 

i

=  - \lambda \gamma (1 - \gamma )(i - 1)

and therefore

d

d\omega i

\biggl[ 
1 - h

\biggl( 
1

2
+

1

2

\sqrt{} 
16\omega i (\omega i  - 1) + 3

\biggr) \biggr] \bigm| \bigm| \bigm| 
\omega \ast 

i

=  - \lambda \gamma .

The function on the left-hand side of the above equation is strictly increasing. Hence,
it must be that all \omega \ast 

i are equal to some constant \omega \ast .
Last, we must have g(\vec{}\omega \ast ) = 0. Thus,\sum 

i\in [smax]

\gamma (1 - \gamma )(i - 1)\omega \ast  - \~p(1) = 0,

which means

\omega \ast =
\~p(1)\sum 

i\in [smax]
\gamma (1 - \gamma )(i - 1)

=
\~p(1)

1 - (1 - \gamma )smax
.

Plugging the minimal values of \omega i into (B.4), we get that

H
\Bigl( 
\vec{}Aj

\vec{}Bj | \vec{}Xj
\vec{}Yj

\vec{}TjR
\prime 
\Bigr) 
\geq 

\sum 
i\in [smax]

(1 - \gamma )(i - 1)

\times 

\Biggl[ 
1 - h

\Biggl( 
1

2
+

1

2

\sqrt{} 
16

\~p(1)

1 - (1 - \gamma )smax

\biggl( 
\~p(1)

1 - (1 - \gamma )smax
 - 1

\biggr) 
+ 3

\Biggr) \Biggr] 

= \=s

\Biggl[ 
1 - h

\Biggl( 
1

2
+

1

2

\sqrt{} 
16

\~p(1)

1 - (1 - \gamma )smax

\biggl( 
\~p(1)

1 - (1 - \gamma )smax
 - 1

\biggr) 
+ 3

\Biggr) \Biggr] 
,

where we used (B.1) to get the last equality.
From this point, we can follow the same steps as in section 4 (cutting and gluing

the function, etc.). The resulting min-tradeoff function is given by

Fmin (\~p, \~pt) =

\Biggl\{ 
g (\~p) , \~p(1) \leq \~pt(1) ,

d
d\~p(1)g(\~p)

\bigm| \bigm| 
\~pt
\cdot \~p(1) +

\Bigl( 
g(\~pt) - d

d\~p(1)g(\~p)
\bigm| \bigm| 
\~pt
\cdot \~pt(1)

\Bigr) 
, \~p(1) > \~pt(1) ,

where

g(\~p) = \=s

\Biggl[ 
1 - h

\Biggl( 
1

2
+

1

2

\sqrt{} 
16

\~p(1)

1 - (1 - \gamma )smax

\biggl( 
\~p(1)

1 - (1 - \gamma )smax
 - 1

\biggr) 
+ 3

\Biggr) \Biggr] 

when \~p(1)
1 - (1 - \gamma )smax \in 

\bigl[ 
3
4 ,

2+
\surd 
2

4

\bigr] 
and g(\~p) = \=s when \~p(1)

1 - (1 - \gamma )smax \in 
\bigl[ 
2+

\surd 
2

4 , 1
\bigr] 
.

The min-tradeoff function given above is effectively identical to the one derived in
the main text; although it gives us a bound on the von Neumann entropy in a block,
instead of a single round, this bound is exactly the expected length of a block, \=s,
times the entropy in one round. For smax = 1, the min-tradeoff function constructed
in the main text is retrieved.
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220 R. ARNON-FRIEDMAN, R. RENNER, AND T. VIDICK

B.3. Modified entropy rate. Since we apply the EAT on the blocks, the en-
tropy rate is now defined to be the entropy per block. We therefore get

\eta (\~p, \~pt, \varepsilon s, \varepsilon e) = Fmin (\~p, \~pt)

 - 1\surd 
m
2

\biggl( 
log(1 + 2 \cdot 2smax3smax) +

\biggl\lceil 
d

d\~p(1)
g(\~p)

\bigm| \bigm| \bigm| 
\~pt

\biggr\rceil \biggr) \sqrt{} 
1 - 2 log(\varepsilon s \cdot \varepsilon e) ,

\eta opt(\varepsilon s, \varepsilon e) = max
3
4<\~pt(1)<

2+
\surd 

2
4

\eta (\omega exp [1 - (1 - \gamma )smax ] - \delta est, \~pt, \varepsilon s, \varepsilon e) ,

and the total amount of entropy is given by

(B.6) H\varepsilon s
min (AB| XYTFE)\rho | \Omega 

> m \cdot \eta opt(\varepsilon s, \varepsilon EA) =
\=n

\=s
\cdot \eta opt(\varepsilon s, \varepsilon EA) .

By choosing smax = \lceil 1
\gamma \rceil , the scaling of the entropy rate with \gamma is better than

the rate derived in the main text. In particular, a short calculation reveals that the
second-order term scales, roughly, as

\sqrt{} 
\=n/\gamma instead of

\surd 
n/\gamma .

B.4. Modified key rate. To get the final key rate, we need to repeat the same
steps from the main text but this time applied to RVs varying lengths.

For this, we first observe that, with high probability, the actual number of rounds,
n, cannot be much larger than the expected number of rounds, \=n. Let Si be the RV
describing the length of block i, for i \in [m], and N the RV describing the total number
of rounds. Then N = S1 + \cdot \cdot \cdot + Sm. Since all the Si are independent, identical, and
have values in

\bigl[ 
1, 1

\gamma 

\bigr] 
, we have

Pr[N \geq \=n+ t] \leq exp

\biggl[ 
 - 2t2\gamma 2

m(1 - \gamma )2

\biggr] 
.

Let \varepsilon t = exp
\bigl[ 
 - 2t2\gamma 2

m(1 - \gamma )2

\bigr] 
; then

t =

\sqrt{} 
 - m(1 - \gamma )2 log \varepsilon t

2\gamma 2
.

The first step in the derivation of the key rate which needs to be changed is the one

given in (5.8). The quantity that needs to be upper bounded is H
\varepsilon s
4

max (B| TEN)\rho | \^\Omega 
;

N can be included in the entropy since its value is fixed by T. By the definition of
the smooth max-entropy, we have

H
\varepsilon s
4

max (B| TEN) \leq H
\varepsilon s
4  - \surd 

\varepsilon t
max (B| TEN,N \leq \=n+ t) .

Following the same steps as in the proof of Lemma 5.3, we have

H
\varepsilon s
4  - \surd 

\varepsilon t
max (B| TEN,N \leq \=n+ t)\rho | \^\Omega 

< \gamma (\=n+ t) + 2 log 7
\surd 
\=n+ t

\sqrt{} 
1 - 2 log ((\varepsilon s/4 - 

\surd 
\varepsilon t) \cdot (\varepsilon EA + \varepsilon EC)) .

With this modification and the modified entropy rate given in (B.6), we get

H\varepsilon s
min (A| XYTOE)\~\rho | \~\Omega 

\geq \=n

\=s
\cdot \eta opt (\varepsilon s/4, \varepsilon EA + \varepsilon EC) - leakEC

 - 3 log
\Bigl( 
1 - 

\sqrt{} 
1 - (\varepsilon s/4)2

\Bigr) 
 - \gamma (\=n+ t)

 - 2 log 7
\surd 
\=n+ t

\sqrt{} 
1 - 2 log ((\varepsilon s/4 - 

\surd 
\varepsilon t) \cdot (\varepsilon EA + \varepsilon EC)) .
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SIMPLE AND TIGHT DEVICE-INDEPENDENT SECURITY PROOFS 221

Similarly, the amount of leakage due to the error correction step leakEC should
be modified as well. Following the steps in section 5.5.1, the quantity to be upper

bounded is H
\varepsilon \prime EC
2

max

\bigl( 
A| \~BXYTN

\bigr) 
. Here as well we have

H
\varepsilon \prime EC
2

max

\Bigl( 
A| \~BXYTN

\Bigr) 
\leq H

\varepsilon \prime EC
2  - \surd 

\varepsilon t
max

\Bigl( 
A| \~BXYTN,N \leq \=n+ t

\Bigr) 
.

The asymptotic equipartition property can be used with the maximal length \=n+ t to
get

H
\varepsilon \prime EC
2  - \surd 

\varepsilon t
max

\Bigl( 
A| \~BXYTN,N \leq \=n+ t

\Bigr) 
\leq (\=n+ t) \cdot H(Ai| \~BiXiYiTi) +

\surd 
\=n+ t \delta (\varepsilon \prime EC  - 2

\surd 
\varepsilon t, \tau )

for \tau = 2
\sqrt{} 

2Hmax(Ai| \~BiXiYiTi) + 1 and

\delta (\varepsilon \prime EC  - 2
\surd 
\varepsilon t, \tau ) = 4 log \tau 

\sqrt{} 
2 log (8/(\varepsilon \prime EC  - 2

\surd 
\varepsilon t)2) .

Continuing exactly as in section 5.5.1, we get

leakEC \leq (\=n+ t) \cdot [(1 - \gamma )h(Q) + \gamma h(\omega exp)]

+ 4 log
\Bigl( 
2
\surd 
2 + 1

\Bigr) \surd 
\=n+ t

\sqrt{} 
2 log (8/(\varepsilon \prime EC  - 2

\surd 
\varepsilon t)2)

+ log
\bigl( 
8/\varepsilon \prime 2EC + 2/ (2 - \varepsilon \prime EC)

\bigr) 
+ log

\biggl( 
1

\varepsilon EC

\biggr) 
.

The parameter \varepsilon t should be chosen such that the key rate is optimized. The
resulting key rates are shown in Figures 5 and 6 in the main text.
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