3 research outputs found

    Superquadric representation of scenes from multi-view range data

    Get PDF
    Object representation denotes representing three-dimensional (3D) real-world objects with known graphic or mathematic primitives recognizable to computers. This research has numerous applications for object-related tasks in areas including computer vision, computer graphics, reverse engineering, etc. Superquadrics, as volumetric and parametric models, have been selected to be the representation primitives throughout this research. Superquadrics are able to represent a large family of solid shapes by a single equation with only a few parameters. This dissertation addresses superquadric representation of multi-part objects and multiobject scenes. Two issues motivate this research. First, superquadric representation of multipart objects or multi-object scenes has been an unsolved problem due to the complex geometry of objects. Second, superquadrics recovered from single-view range data tend to have low confidence and accuracy due to partially scanned object surfaces caused by inherent occlusions. To address these two problems, this dissertation proposes a multi-view superquadric representation algorithm. By incorporating both part decomposition and multi-view range data, the proposed algorithm is able to not only represent multi-part objects or multi-object scenes, but also achieve high confidence and accuracy of recovered superquadrics. The multi-view superquadric representation algorithm consists of (i) initial superquadric model recovery from single-view range data, (ii) pairwise view registration based on recovered superquadric models, (iii) view integration, (iv) part decomposition, and (v) final superquadric fitting for each decomposed part. Within the multi-view superquadric representation framework, this dissertation proposes a 3D part decomposition algorithm to automatically decompose multi-part objects or multiobject scenes into their constituent single parts consistent with human visual perception. Superquadrics can then be recovered for each decomposed single-part object. The proposed part decomposition algorithm is based on curvature analysis, and includes (i) Gaussian curvature estimation, (ii) boundary labeling, (iii) part growing and labeling, and (iv) post-processing. In addition, this dissertation proposes an extended view registration algorithm based on superquadrics. The proposed view registration algorithm is able to handle deformable superquadrics as well as 3D unstructured data sets. For superquadric fitting, two objective functions primarily used in the literature have been comprehensively investigated with respect to noise, viewpoints, sample resolutions, etc. The objective function proved to have better performance has been used throughout this dissertation. In summary, the three algorithms (contributions) proposed in this dissertation are generic and flexible in the sense of handling triangle meshes, which are standard surface primitives in computer vision and graphics. For each proposed algorithm, the dissertation presents both theory and experimental results. The results demonstrate the efficiency of the algorithms using both synthetic and real range data of a large variety of objects and scenes. In addition, the experimental results include comparisons with previous methods from the literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art in superquadric representation, and presents possible future extensions to this research

    3D object retrieval and segmentation: various approaches including 2D poisson histograms and 3D electrical charge distributions.

    Get PDF
    Nowadays 3D models play an important role in many applications: viz. games, cultural heritage, medical imaging etc. Due to the fast growth in the number of available 3D models, understanding, searching and retrieving such models have become interesting fields within computer vision. In order to search and retrieve 3D models, we present two different approaches: one is based on solving the Poisson Equation over 2D silhouettes of the models. This method uses 60 different silhouettes, which are automatically extracted from different viewangles. Solving the Poisson equation for each silhouette assigns a number to each pixel as its signature. Accumulating these signatures generates a final histogram-based descriptor for each silhouette, which we call a SilPH (Silhouette Poisson Histogram). For the second approach, we propose two new robust shape descriptors based on the distribution of charge density on the surface of a 3D model. The Finite Element Method is used to calculate the charge density on each triangular face of each model as a local feature. Then we utilize the Bag-of-Features and concentric sphere frameworks to perform global matching using these local features. In addition to examining the retrieval accuracy of the descriptors in comparison to the state-of-the-art approaches, the retrieval speeds as well as robustness to noise and deformation on different datasets are investigated. On the other hand, to understand new complex models, we have also utilized distribution of electrical charge for proposing a system to decompose models into meaningful parts. Our robust, efficient and fully-automatic segmentation approach is able to specify the segments attached to the main part of a model as well as locating the boundary parts of the segments. The segmentation ability of the proposed system is examined on the standard datasets and its timing and accuracy are compared with the existing state-of-the-art approaches
    corecore