44,191 research outputs found

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    A discriminative latent variable-based "DE" classifier for Chinese–English SMT

    Get PDF
    Syntactic reordering on the source-side is an effective way of handling word order differences. The (DE) construction is a flexible and ubiquitous syntactic structure in Chinese which is a major source of error in translation quality. In this paper, we propose a new classifier model — discriminative latent variable model (DPLVM) — to classify the DE construction to improve the accuracy of the classification and hence the translation quality. We also propose a new feature which can automatically learn the reordering rules to a certain extent. The experimental results show that the MT systems using the data reordered by our proposed model outperform the baseline systems by 6.42% and 3.08% relative points in terms of the BLEU score on PB-SMT and hierarchical phrase-based MT respectively. In addition, we analyse the impact of DE annotation on word alignment and on the SMT phrase table

    Fine-grained human evaluation of neural versus phrase-based machine translation

    Get PDF
    We compare three approaches to statistical machine translation (pure phrase-based, factored phrase-based and neural) by performing a fine-grained manual evaluation via error annotation of the systems' outputs. The error types in our annotation are compliant with the multidimensional quality metrics (MQM), and the annotation is performed by two annotators. Inter-annotator agreement is high for such a task, and results show that the best performing system (neural) reduces the errors produced by the worst system (phrase-based) by 54%.Comment: 12 pages, 2 figures, The Prague Bulletin of Mathematical Linguistic

    Addressing the Rare Word Problem in Neural Machine Translation

    Full text link
    Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk symbol that represents every possible out-of-vocabulary (OOV) word. In this paper, we propose and implement an effective technique to address this problem. We train an NMT system on data that is augmented by the output of a word alignment algorithm, allowing the NMT system to emit, for each OOV word in the target sentence, the position of its corresponding word in the source sentence. This information is later utilized in a post-processing step that translates every OOV word using a dictionary. Our experiments on the WMT14 English to French translation task show that this method provides a substantial improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best result achieved on a WMT14 contest task.Comment: ACL 2015 camera-ready versio

    Attention Focusing for Neural Machine Translation by Bridging Source and Target Embeddings

    Full text link
    In neural machine translation, a source sequence of words is encoded into a vector from which a target sequence is generated in the decoding phase. Differently from statistical machine translation, the associations between source words and their possible target counterparts are not explicitly stored. Source and target words are at the two ends of a long information processing procedure, mediated by hidden states at both the source encoding and the target decoding phases. This makes it possible that a source word is incorrectly translated into a target word that is not any of its admissible equivalent counterparts in the target language. In this paper, we seek to somewhat shorten the distance between source and target words in that procedure, and thus strengthen their association, by means of a method we term bridging source and target word embeddings. We experiment with three strategies: (1) a source-side bridging model, where source word embeddings are moved one step closer to the output target sequence; (2) a target-side bridging model, which explores the more relevant source word embeddings for the prediction of the target sequence; and (3) a direct bridging model, which directly connects source and target word embeddings seeking to minimize errors in the translation of ones by the others. Experiments and analysis presented in this paper demonstrate that the proposed bridging models are able to significantly improve quality of both sentence translation, in general, and alignment and translation of individual source words with target words, in particular.Comment: 9 pages, 6 figures. Accepted by ACL201
    • 

    corecore