We compare three approaches to statistical machine translation (pure
phrase-based, factored phrase-based and neural) by performing a fine-grained
manual evaluation via error annotation of the systems' outputs. The error types
in our annotation are compliant with the multidimensional quality metrics
(MQM), and the annotation is performed by two annotators. Inter-annotator
agreement is high for such a task, and results show that the best performing
system (neural) reduces the errors produced by the worst system (phrase-based)
by 54%.Comment: 12 pages, 2 figures, The Prague Bulletin of Mathematical Linguistic