43 research outputs found

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    SensX: About Sensing and Assessment of Complex Human Motion

    Full text link
    The great success of wearables and smartphone apps for provision of extensive physical workout instructions boosts a whole industry dealing with consumer oriented sensors and sports equipment. But with these opportunities there are also new challenges emerging. The unregulated distribution of instructions about ambitious exercises enables unexperienced users to undertake demanding workouts without professional supervision which may lead to suboptimal training success or even serious injuries. We believe, that automated supervision and realtime feedback during a workout may help to solve these issues. Therefore we introduce four fundamental steps for complex human motion assessment and present SensX, a sensor-based architecture for monitoring, recording, and analyzing complex and multi-dimensional motion chains. We provide the results of our preliminary study encompassing 8 different body weight exercises, 20 participants, and more than 9,220 recorded exercise repetitions. Furthermore, insights into SensXs classification capabilities and the impact of specific sensor configurations onto the analysis process are given.Comment: Published within the Proceedings of 14th IEEE International Conference on Networking, Sensing and Control (ICNSC), May 16th-18th, 2017, Calabria Italy 6 pages, 5 figure

    Comparing CNN and Human Crafted Features for Human Activity Recognition

    Get PDF
    Deep learning techniques such as Convolutional Neural Networks (CNNs) have shown good results in activity recognition. One of the advantages of using these methods resides in their ability to generate features automatically. This ability greatly simplifies the task of feature extraction that usually requires domain specific knowledge, especially when using big data where data driven approaches can lead to anti-patterns. Despite the advantage of this approach, very little work has been undertaken on analyzing the quality of extracted features, and more specifically on how model architecture and parameters affect the ability of those features to separate activity classes in the final feature space. This work focuses on identifying the optimal parameters for recognition of simple activities applying this approach on both signals from inertial and audio sensors. The paper provides the following contributions: (i) a comparison of automatically extracted CNN features with gold standard Human Crafted Features (HCF) is given, (ii) a comprehensive analysis on how architecture and model parameters affect separation of target classes in the feature space. Results are evaluated using publicly available datasets. In particular, we achieved a 93.38% F-Score on the UCI-HAR dataset, using 1D CNNs with 3 convolutional layers and 32 kernel size, and a 90.5% F-Score on the DCASE 2017 development dataset, simplified for three classes (indoor, outdoor and vehicle), using 2D CNNs with 2 convolutional layers and a 2x2 kernel size

    Embedded AM-FM Signal Decomposition Algorithm for Continuous Human Activity Monitoring

    Get PDF
    AM-FM decomposition techniques have been successfully used for extracting significative features from a large variety of signals, helping realtime signal monitoring and pattern recognition, since they represent signals as a simultaneous composition of amplitude modulation and frequency modulation, where the carriers, amplitude envelopes, and the instantaneous frequencies are the features to be estimated. Human activities often involve repetitive movements, such as in running or cycling, where sinusoidal AM-FM decompositions of signals have already demonstrated to be useful to extract compact features to aid monitoring, classification, or detection. In this work we thus present the challenges and results of implementing the iterated coherent Hilbert decomposition (ICHD), a particularly effective algorithm to obtain an AM-FM decomposition, within a resource-constrained and low-power ARM Cortex-M4 microcontroller that is present in a wearable sensor we developed. We apply ICHD to the gyroscope data acquired from an inertial measurement unit (IMU) that is present in the sensor. Optimizing the implementation allowed us to achieve real-time performance using less then 16 % of the available CPU time, while consuming only about 5.4 mW of power, which results in a run-time of over 7 days using a small 250 mAh rechargeable cell

    How to track behaviours’ changes toward more sustainable mobility habits: the serious game of TrafficO2

    Get PDF
    Social science and new communication technologies are influencing deeply the transportation domain and new models of urban sustainable development are constantly emerging as new possible solutions. One of the principal reasons is the capability to reach the motivations that foster us to choose one or other urban transportation systems. It’s already feasible to develop solutions to aim the implementation and the rooting of more efficient and sustainable habits in urban transportation. The present exploratory paper presents the activities conducted by innovation lab PUSH, with the Italian Ministry of Innovation and Research, for the development and the application of the social innovation project “trafficO2” in the city of Palermo Italy. The project is a technology driven (a mobile app) serious game for sustainable urban mobility that tries to foster citizens, through information and tailor made incentives, to choose low emission means instead of using cars. In a very controversial context given by the urban mobility of the city of Palermo, aim of the game is to build a strong and values driven self-organized community, able to change the actual urban condition without any command and control policies or any structural transformation. The system was already tested twice with the community of students of the Palermo University; the paper shows the first results in terms of CO2 reduction and testers engagement

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    International audienceRecent years have witnessed the rapid development of human activity recognition (HAR) based on werable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    Accelerator-Based Human Activity Recognition Using Voting Technique with NBTree and MLP Classifiers

    Get PDF
    In evolution and ubiquitous computing systems, accelerometer-based human activity recognition has huge potential in a large number of application domains. Accelerometer-based human activity recognition aims to identify physical activities performed by human using accelerometer; a sensor device attached to the body and returns an actual valued estimate of acceleration along the x-, y- and z-axes from which the sensor location can be estimated. In this study, an accelerator-based activity recognition model using voting technique was proposed. Two machine learning classifiers, NaĂŻve Bayes Tree (NBTree) and Multilayer Perceptron (MLP), were used as ensemble classifiers in the voting technique. To evaluate the proposed voting technique, the performance of selected individual classifiers and existing voting technique was first examined, followed by the experiment to determine the performance of the proposed model. All of the experiments were performed using a standard dataset called Wireless Sensor Data Mining involving six physical human activities; jogging, walking, walking towards upstairs, walking towards downstairs, sitting and stand still. Results showed that the proposed voting technique with NBTree and MLP ensemble classifiers outperformed other individual classifiers and another previously suggested voting technique for accelerometer-based human activity recognition

    Window Selection Impact in Human Activity Recognition

    Get PDF
    Signal segmentation is usually applied in the pre-processing step to make the data analysis easier. Windowing approach is commonly used for signal segmentation. However, it is unclear which type of window should be used to get optimum accuracy in human activity recognition. This study aimed to evaluat e which window type yields the optimum accuracy in human activity recognition. The acceleration data of walking, jogging, and running were collected from 20 young adults. Then, the recognition accuracy of each window types is evaluated and compared to determine the impact of window selection in human movement data. From the evaluation, the overlapping 75% window with 0.1 s length provides the highest accuracy with mean, standard deviation, maximum, minimum, and energy as the features. The result of this study could be used for future researches in relation to human activity recognition.&nbsp
    corecore