8,082 research outputs found

    Simple Semi-Grant-Free Transmission Strategies Assisted by Non-Orthogonal Multiple Access

    Full text link
    Grant-free transmission is an important feature to be supported by future wireless networks since it reduces the signalling overhead caused by conventional grant-based schemes. However, for grant-free transmission, the number of users admitted to the same channel is not caped, which can lead to a failure of multi-user detection. This paper proposes non-orthogonal multiple-access (NOMA) assisted semi-grant-free (SGF) transmission, which is a compromise between grant-free and grant-based schemes. In particular, instead of reserving channels either for grant-based users or grant-free users, we focus on an SGF communication scenario, where users are admitted to the same channel via a combination of grant-based and grant-free protocols. As a result, a channel reserved by a grant-based user can be shared by grant-free users, which improves both connectivity and spectral efficiency. Two NOMA assisted SGF contention control mechanisms are developed to ensure that, with a small amount of signalling overhead, the number of admitted grant-free users is carefully controlled and the interference from the grant-free users to the grant-based users is effectively suppressed. Analytical results are provided to demonstrate that the two proposed SGF mechanisms employing different successive interference cancelation decoding orders are applicable to different practical network scenarios

    Impact of NOMA on Age of Information: A Grant-Free Transmission Perspective

    Full text link
    The aim of this paper is to characterize the impact of non-orthogonal multiple access (NOMA) on the age of information (AoI) of grant-free transmission. In particular, a low-complexity form of NOMA, termed NOMA-assisted random access, is applied to grant-free transmission in order to illustrate the two benefits of NOMA for AoI reduction, namely increasing channel access and reducing user collisions. Closed-form analytical expressions for the AoI achieved by NOMA assisted grant-free transmission are obtained, and asymptotic studies are carried out to demonstrate that the use of the simplest form of NOMA is already sufficient to reduce the AoI of orthogonal multiple access (OMA) by more than 40%. In addition, the developed analytical expressions are also shown to be useful for optimizing the users' transmission attempt probabilities, which are key parameters for grant-free transmission

    On Secure NOMA-Aided Semi-Grant-Free Systems

    Full text link
    Semi-grant-free (SGF) transmission scheme enables grant-free (GF) users to utilize resource blocks allocated for grant-based (GB) users while maintaining the quality of service of GB users. This work investigates the secrecy performance of non-orthogonal multiple access (NOMA)-aided SGF systems. First, analytical expressions for the exact and asymptotic secrecy outage probability (SOP) of NOMA-aided SGF systems with a single GF user are derived. Then, the SGF systems with multiple GF users and a best-user scheduling scheme is considered. By utilizing order statistics theory, closed-form expressions for the exact and asymptotic SOP are derived. Monte Carlo simulation results demonstrate the effects of system parameters on the SOP of the considered system and verify the accuracy of the developed analytical results. The results indicate that both the outage target rate for GB and the secure target rate for GF are the main factors of the secrecy performance of SGF systems

    Advanced NOMA Assisted Semi-Grant-Free Transmission Schemes for Randomly Distributed Users

    Full text link
    Non-orthogonal multiple access (NOMA) assisted semi-grant-free (SGF) transmission has recently received significant research attention due to its outstanding ability of serving grant-free (GF) users with grant-based (GB) users' spectrum, {\color{blue}which can greatly improve the spectrum efficiency and effectively relieve the massive access problem of 5G and beyond networks. In this paper, we investigate the performance of SGF schemes under more practical settings.} Firstly, we study the outage performance of the best user scheduling SGF scheme (BU-SGF) by considering the impacts of Rayleigh fading, path loss, and random user locations. Then, a fair SGF scheme is proposed by applying cumulative distribution function (CDF)-based scheduling (CS-SGF), which can also make full use of multi-user diversity. Moreover, by employing the theories of order statistics and stochastic geometry, we analyze the outage performances of both BU-SGF and CS-SGF schemes. Results show that full diversity orders can be achieved only when the served users' data rate is capped, which severely limit the rate performance of SGF schemes. To further address this issue, we propose a distributed power control strategy to relax such data rate constraint, and derive closed-form expressions of the two schemes' outage performances under this strategy. Finally, simulation results validate the fairness performance of the proposed CS-SGF scheme, the effectiveness of the power control strategy, and the accuracy of the theoretical analyses.Comment: 41 pages, 8 figure
    corecore