8 research outputs found

    Simple Low-Density Parity Check (LDPC) Staircase Forward Error Correction (FEC) Scheme for FECFRAME

    Get PDF
    Internet Engineering Task Force (IETF) Request for Comments 6816This document describes a fully specified simple Forward Error Correction (FEC) scheme for Low-Density Parity Check (LDPC) Staircase codes that can be used to protect media streams along the lines defined by FECFRAME. These codes have many interesting properties: they are systematic codes, they perform close to ideal codes in many use-cases, and they also feature very high encoding and decoding throughputs. LDPC-Staircase codes are therefore a good solution to protect a single high bitrate source flow or to protect globally several mid-rate flows within a single FECFRAME instance. They are also a good solution whenever the processing load of a software encoder or decoder must be kept to a minimum

    Simple Low-Density Parity Check (LDPC) Staircase Forward Error Correction (FEC) Scheme for FECFRAME, RFC 6816

    Get PDF
    This document describes a fully specified simple Forward Error Correction (FEC) scheme for Low-Density Parity Check (LDPC) Staircase codes that can be used to protect media streams along the lines defined by FECFRAME. These codes have many interesting properties: they are systematic codes, they perform close to ideal codes in many use-cases, and they also feature very high encoding and decoding throughputs. LDPC-Staircase codes are therefore a good solution to protect a single high bitrate source flow or to protect globally several mid-rate flows within a single FECFRAME instance. They are also a good solution whenever the processing load of a software encoder or decoder must be kept to a minimum

    RS + LDPC-Staircase Codes for the Erasure Channel: Standards, Usage and Performance

    Get PDF
    Application-Level Forward Erasure Correction (AL-FEC) codes are a key element of telecommunication systems. They are used to recover from packet losses when retransmission are not feasible and to optimize the large scale distribution of contents. In this paper we introduce Reed-Solomon/LDPCStaircase codes, two complementary AL-FEC codes that have recently been recognized as superior to Raptor codes in the context of the 3GPP-eMBMS call for technology [1]. After a brief introduction to the codes, we explain how to design high performance codecs which is a key aspect when targeting embedded systems with limited CPU/battery capacity. Finally we present the performances of these codes in terms of erasure correction capabilities and encoding/decoding speed, taking advantage of the 3GPP-eMBMS results where they have been ranked first

    FECFRAMEv2: Adding Sliding Encoding Window Capabilities to the FEC Framework: Problem Position

    Get PDF
    Working document of the NWCRG (Network Coding Research Group) group of IRTF (Internet Research Task Force)The Forward Error Correction (FEC) Framework (or FECFRAME) (RFC 6363) has been defined by the FECFRAME IETF WG to enable the use of FEC Encoding with real-time flows in a flexible manner. The original FECFRAME specification only considers the use of block FEC codes, wherein the input flow(s) is(are) segmented into a sequence of blocks and FEC encoding performed independently on a per-block basis. This document discusses an extension of FECFRAME in order to enable a sliding (potentially elastic) window encoding of the input flow(s), using convolutional FEC codes for the erasure channel, as an alternative to block FEC codes

    Forward Error Correction (FEC) Framework Extension to Sliding Window Codes (RFC 8680)

    Get PDF
    RFC 8680, Standards Track, TSVWG (Transport Area) working group of IETF (Internet Engineering Task Force), https://www.rfc-editor.org/rfc/rfc8680.htmlRFC 6363 describes a framework for using Forward Error Correction (FEC) codes with applications in public and private IP networks to provide protection against packet loss. The framework supports applying FEC to arbitrary packet flows over unreliable transport and is primarily intended for real-time, or streaming, media. However FECFRAME as per RFC 6363 is restricted to block FEC codes. The present document extends FECFRAME to support FEC Codes based on a sliding encoding window, in addition to Block FEC Codes, in a backward compatible way. During multicast/broadcast real-time content delivery, the use of sliding window codes significantly improves robustness in harsh environments, with less repair traffic and lower FEC-related added latency

    Simple Low-Density Parity Check (LDPC) Staircase Forward Error Correction (FEC) Scheme for FECFRAME

    No full text
    Internet Engineering Task Force (IETF) Request for Comments 6816This document describes a fully specified simple Forward Error Correction (FEC) scheme for Low-Density Parity Check (LDPC) Staircase codes that can be used to protect media streams along the lines defined by FECFRAME. These codes have many interesting properties: they are systematic codes, they perform close to ideal codes in many use-cases, and they also feature very high encoding and decoding throughputs. LDPC-Staircase codes are therefore a good solution to protect a single high bitrate source flow or to protect globally several mid-rate flows within a single FECFRAME instance. They are also a good solution whenever the processing load of a software encoder or decoder must be kept to a minimum
    corecore