21 research outputs found

    A Hypergraph Dictatorship Test with Perfect Completeness

    Full text link
    A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based \PCP construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1).o(1). Their test makes q3q\geq3 queries and has amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}) but has an inherent loss of perfect completeness. In this paper we give an adaptive hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}).Comment: Some minor correction

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1

    On the Usefulness of Predicates

    Full text link
    Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then only needs to satisfy as many of the new constraints as possible. To be more precise, we introduce the following notion of a predicate PP being \emph{useful} for a (real-valued) objective QQ: given an almost satisfiable Max-PP instance, there is an algorithm that beats a random assignment on the corresponding Max-QQ instance applied to the same sets of literals. The standard notion of a nontrivial approximation algorithm for a Max-CSP with predicate PP is exactly the same as saying that PP is useful for PP itself. We say that PP is useless if it is not useful for any QQ. This turns out to be equivalent to the following pseudo-randomness property: given an almost satisfiable instance of Max-PP it is hard to find an assignment such that the induced distribution on kk-bit strings defined by the instance is not essentially uniform. Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution supported on the satisfying assignments of the predicate. It is natural to also consider the case when no negations are allowed in the CSP instance, and we derive a similar complete characterization (under the UGC) there as well. Finally, we also include some results and examples shedding additional light on the approximability of certain Max-CSPs

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    On the Communication Complexity of High-Dimensional Permutations

    Get PDF
    We study the multiparty communication complexity of high dimensional permutations in the Number On the Forehead (NOF) model. This model is due to Chandra, Furst and Lipton (CFL) who also gave a nontrivial protocol for the Exactly-n problem where three players receive integer inputs and need to decide if their inputs sum to a given integer n. There is a considerable body of literature dealing with the same problem, where (N,+) is replaced by some other abelian group. Our work can be viewed as a far-reaching extension of this line of research. We show that the known lower bounds for that group-theoretic problem apply to all high dimensional permutations. We introduce new proof techniques that reveal new and unexpected connections between NOF communication complexity of permutations and a variety of well-known problems in combinatorics. We also give a direct algorithmic protocol for Exactly-n. In contrast, all previous constructions relied on large sets of integers without a 3-term arithmetic progression
    corecore