5 research outputs found

    One for All: Neural Joint Modeling of Entities and Events

    Full text link
    The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.Comment: Accepted at The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) (Honolulu, Hawaii, USA

    GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and Event Extraction

    Full text link
    Recent progress in cross-lingual relation and event extraction use graph convolutional networks (GCNs) with universal dependency parses to learn language-agnostic sentence representations such that models trained on one language can be applied to other languages. However, GCNs struggle to model words with long-range dependencies or are not directly connected in the dependency tree. To address these challenges, we propose to utilize the self-attention mechanism where we explicitly fuse structural information to learn the dependencies between words with different syntactic distances. We introduce GATE, a {\bf G}raph {\bf A}ttention {\bf T}ransformer {\bf E}ncoder, and test its cross-lingual transferability on relation and event extraction tasks. We perform experiments on the ACE05 dataset that includes three typologically different languages: English, Chinese, and Arabic. The evaluation results show that GATE outperforms three recently proposed methods by a large margin. Our detailed analysis reveals that due to the reliance on syntactic dependencies, GATE produces robust representations that facilitate transfer across languages.Comment: AAAI 202
    corecore