1,767 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Where and Who? Automatic Semantic-Aware Person Composition

    Full text link
    Image compositing is a method used to generate realistic yet fake imagery by inserting contents from one image to another. Previous work in compositing has focused on improving appearance compatibility of a user selected foreground segment and a background image (i.e. color and illumination consistency). In this work, we instead develop a fully automated compositing model that additionally learns to select and transform compatible foreground segments from a large collection given only an input image background. To simplify the task, we restrict our problem by focusing on human instance composition, because human segments exhibit strong correlations with their background and because of the availability of large annotated data. We develop a novel branching Convolutional Neural Network (CNN) that jointly predicts candidate person locations given a background image. We then use pre-trained deep feature representations to retrieve person instances from a large segment database. Experimental results show that our model can generate composite images that look visually convincing. We also develop a user interface to demonstrate the potential application of our method.Comment: 10 pages, 9 figure

    Covariate conscious approach for Gait recognition based upon Zernike moment invariants

    Full text link
    Gait recognition i.e. identification of an individual from his/her walking pattern is an emerging field. While existing gait recognition techniques perform satisfactorily in normal walking conditions, there performance tend to suffer drastically with variations in clothing and carrying conditions. In this work, we propose a novel covariate cognizant framework to deal with the presence of such covariates. We describe gait motion by forming a single 2D spatio-temporal template from video sequence, called Average Energy Silhouette image (AESI). Zernike moment invariants (ZMIs) are then computed to screen the parts of AESI infected with covariates. Following this, features are extracted from Spatial Distribution of Oriented Gradients (SDOGs) and novel Mean of Directional Pixels (MDPs) methods. The obtained features are fused together to form the final well-endowed feature set. Experimental evaluation of the proposed framework on three publicly available datasets i.e. CASIA dataset B, OU-ISIR Treadmill dataset B and USF Human-ID challenge dataset with recently published gait recognition approaches, prove its superior performance.Comment: 11 page

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    IMPROVING EFFICIENCY AND SCALABILITY IN VISUAL SURVEILLANCE APPLICATIONS

    Get PDF
    We present four contributions to visual surveillance: (a) an action recognition method based on the characteristics of human motion in image space; (b) a study of the strengths of five regression techniques for monocular pose estimation that highlights the advantages of kernel PLS; (c) a learning-based method for detecting objects carried by humans requiring minimal annotation; (d) an interactive video segmentation system that reduces supervision by using occlusion and long term spatio-temporal structure information. We propose a representation for human actions that is based solely on motion information and that leverages the characteristics of human movement in the image space. The representation is best suited to visual surveillance settings in which the actions of interest are highly constrained, but also works on more general problems if the actions are ballistic in nature. Our computationally efficient representation achieves good recognition performance on both a commonly used action recognition dataset and on a dataset we collected to simulate a checkout counter. We study discriminative methods for 3D human pose estimation from single images, which build a map from image features to pose. The main difficulty with these methods is the insufficiency of training data due to the high dimensionality of the pose space. However, real datasets can be augmented with data from character animation software, so the scalability of existing approaches becomes important. We argue that Kernel Partial Least Squares approximates Gaussian Process regression robustly, enabling the use of larger datasets, and we show in experiments that kPLS outperforms two state-of-the-art methods based on GP. The high variability in the appearance of carried objects suggests using their relation to the human silhouette to detect them. We adopt a generate-and-test approach that produces candidate regions from protrusion, color contrast and occlusion boundary cues and then filters them with a kernel SVM classifier on context features. Our method exceeds state of the art accuracy and has good generalization capability. We also propose a Multiple Instance Learning framework for the classifier that reduces annotation effort by two orders of magnitude while maintaining comparable accuracy. Finally, we present an interactive video segmentation system that trades off a small amount of segmentation quality for significantly less supervision than necessary in systems in the literature. While applications like video editing could not directly use the output of our system, reasoning about the trajectories of objects in a scene or learning coarse appearance models is still possible. The unsupervised segmentation component at the base of our system effectively employs occlusion boundary cues and achieves competitive results on an unsupervised segmentation dataset. On videos used to evaluate interactive methods, our system requires less interaction time than others, does not rely on appearance information and can extract multiple objects at the same time
    corecore