9,275 research outputs found

    Spectrum-based deep neural networks for fraud detection

    Full text link
    In this paper, we focus on fraud detection on a signed graph with only a small set of labeled training data. We propose a novel framework that combines deep neural networks and spectral graph analysis. In particular, we use the node projection (called as spectral coordinate) in the low dimensional spectral space of the graph's adjacency matrix as input of deep neural networks. Spectral coordinates in the spectral space capture the most useful topology information of the network. Due to the small dimension of spectral coordinates (compared with the dimension of the adjacency matrix derived from a graph), training deep neural networks becomes feasible. We develop and evaluate two neural networks, deep autoencoder and convolutional neural network, in our fraud detection framework. Experimental results on a real signed graph show that our spectrum based deep neural networks are effective in fraud detection

    Learning to solve Minimum Cost Multicuts efficiently using Edge-Weighted Graph Convolutional Neural Networks

    Get PDF
    The minimum cost multicut problem is the NP-hard/APX-hard combinatorial optimization problem of partitioning a real-valued edge-weighted graph such as to minimize the total cost of the partition. While graph convolutional neural networks (GNN) have proven to be promising in the context of combinatorial optimization, most of them are only tailored to or tested on positive-valued edge weights, i.e. they do not comply to the nature of the multicut problem. We therefore adapt various GNN architectures including Graph Convolutional Networks, Signed Graph Convolutional Networks and Graph Isomorphic Networks to facilitate the efficient encoding of real-valued edge costs. Moreover, we employ a reformulation of the multicut ILP constraints to a polynomial program as loss function that allows to learn feasible multicut solutions in a scalable way. Thus, we provide the first approach towards end-to-end trainable multicuts. Our findings support that GNN approaches can produce good solutions in practice while providing lower computation times and largely improved scalability compared to LP solvers and optimized heuristics, especially when considering large instances

    Trustworthiness-Driven Graph Convolutional Networks for Signed Network Embedding

    Full text link
    The problem of representing nodes in a signed network as low-dimensional vectors, known as signed network embedding (SNE), has garnered considerable attention in recent years. While several SNE methods based on graph convolutional networks (GCN) have been proposed for this problem, we point out that they significantly rely on the assumption that the decades-old balance theory always holds in the real-world. To address this limitation, we propose a novel GCN-based SNE approach, named as TrustSGCN, which corrects for incorrect embedding propagation in GCN by utilizing the trustworthiness on edge signs for high-order relationships inferred by the balance theory. The proposed approach consists of three modules: (M1) generation of each node's extended ego-network; (M2) measurement of trustworthiness on edge signs; and (M3) trustworthiness-aware propagation of embeddings. Furthermore, TrustSGCN learns the node embeddings by leveraging two well-known societal theories, i.e., balance and status. The experiments on four real-world signed network datasets demonstrate that TrustSGCN consistently outperforms five state-of-the-art GCN-based SNE methods. The code is available at https://github.com/kmj0792/TrustSGCN.Comment: 12 pages, 8 figures, 9 table

    Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

    Full text link
    Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.Comment: Proceedings of the 27th International Joint Conference on Artificial Intelligenc
    • …
    corecore