1,883,694 research outputs found
Improved quality of experience of reconstructed H.264/AVC encoded video sequences through robust pixel domain error detection
The transmission of H.264/AVC encoded sequences over noisy wireless channels generally adopt the error detection capabilities of the transport protocol to identify and discard corrupted slices. All the macroblocks (MBs) within each corrupted slice are then concealed. This paper presents an algorithm that does not discard the corrupted slices but tries to detect those MBs which provide major visual artefacts and then conceal only these MBs. Results show that the proposed solution, based on a set of image-level features and two Support Vector Machines (SVMs), manages to detect 94.6% of those artefacts. Gains in Peak Signal-to-Noise Ratios (PSNR) of up to 5.74 dB have been obtained when compared to the standard H.264/AVC decoder.peer-reviewe
Television signal processing system Patent
Video signal processing system for sampling video brightness level
Signal processing with Levy information
Levy processes, which have stationary independent increments, are ideal for
modelling the various types of noise that can arise in communication channels.
If a Levy process admits exponential moments, then there exists a parametric
family of measure changes called Esscher transformations. If the parameter is
replaced with an independent random variable, the true value of which
represents a "message", then under the transformed measure the original Levy
process takes on the character of an "information process". In this paper we
develop a theory of such Levy information processes. The underlying Levy
process, which we call the fiducial process, represents the "noise type". Each
such noise type is capable of carrying a message of a certain specification. A
number of examples are worked out in detail, including information processes of
the Brownian, Poisson, gamma, variance gamma, negative binomial, inverse
Gaussian, and normal inverse Gaussian type. Although in general there is no
additive decomposition of information into signal and noise, one is led
nevertheless for each noise type to a well-defined scheme for signal detection
and enhancement relevant to a variety of practical situations.Comment: 27 pages. Version to appear in: Proc. R. Soc. London
Noise Variance Estimation In Signal Processing
We present a new method of estimating noise
variance. The method is applicable for 1D and 2D signal
processing. The essence of this method is estimation of the scatter
of normally distributed data with high level of outliers. The
method is applicable to data with the majority of the data points
having no signal present. The method is based on the shortest
half sample method. The mean of the shortest half sample
(shorth) and the location of the least median of squares are
among the most robust measures of the location of the mode. The
length of the shortest half sample has been used as the
measurement of the data scatter of uncontaminated data. We
show that computing the length of several sub samples of varying
sizes provides the necessary information to estimate both the
scatter and the number of uncontaminated data points in a
sample. We derive the system of equations to solve for the data
scatter and the number of uncontaminated data points for the
Gaussian distribution. The data scatter is the measure of the
noise variance. The method can be extended to other
distributions
Structured random measurements in signal processing
Compressed sensing and its extensions have recently triggered interest in
randomized signal acquisition. A key finding is that random measurements
provide sparse signal reconstruction guarantees for efficient and stable
algorithms with a minimal number of samples. While this was first shown for
(unstructured) Gaussian random measurement matrices, applications require
certain structure of the measurements leading to structured random measurement
matrices. Near optimal recovery guarantees for such structured measurements
have been developed over the past years in a variety of contexts. This article
surveys the theory in three scenarios: compressed sensing (sparse recovery),
low rank matrix recovery, and phaseless estimation. The random measurement
matrices to be considered include random partial Fourier matrices, partial
random circulant matrices (subsampled convolutions), matrix completion, and
phase estimation from magnitudes of Fourier type measurements. The article
concludes with a brief discussion of the mathematical techniques for the
analysis of such structured random measurements.Comment: 22 pages, 2 figure
- …
