228,691 research outputs found

    AUTOMATED TESTING OF SIMULINK/STATEFLOW MODELS IN THE AUTOMOTIVE DOMAIN

    Get PDF
    Context. Simulink/Stateflow is an advanced system modeling platform which is prevalently used in the Cyber Physical Systems domain, e.g., automotive industry, to implement software con- trollers. Testing Simulink models is complex and poses several challenges to research and prac- tice. Simulink models often have mixed discrete-continuous behaviors and their correct behav- ior crucially depends on time. Inputs and outputs of Simulink models are signals, i.e., values evolving over time, rather than discrete values. Further, Simulink models are required to operate satisfactory for a large variety of hardware configurations. Finally, developing test oracles for Simulink models is challenging, particularly for requirements capturing their continuous aspects. In this dissertation, we focus on testing mixed discrete-continuous aspects of Simulink models, an important, yet not well-studied, problem. The existing Simulink testing techniques are more amenable to testing and verification of logical and state-based properties. Further, they are mostly incompatible with Simulink models containing time-continuos blocks, and floating point and non- linear computations. In addition, they often rely on the presence of formal specifications, which are expensive and rare in practice, to automate test oracles. Approach. In this dissertation, we propose a set of approaches based on meta-heuristic search and machine learning techniques to automate testing of software controllers implemented in Simulink. The work presented in this dissertation is motived by Simulink testing needs at Delphi Automotive Systems, a world leading part supplier to the automotive industry. To address the above-mentioned challenges, we rely on discrete-continuous output signals of Simulink models and provide output- based black-box test generation techniques to produce test cases with high fault-revealing ability. Our algorithms are black-box, hence, compatible with Simulink/Stateflow models in their en- tirety. Further, we do not rely on the presence of formal specifications to automate test oracles. Specifically, we propose two sets of test generation algorithms for closed-loop and open-loop con- trollers implemented in Simulink: (1) For closed-loop controllers, test oracles can be formalized and automated relying on the feedback received from the controlled system. We characterize the desired behavior of closed-loop controllers in a set of common requirements, and then use search to identify the worst-case test scenarios of the controller with respect to each requirement. (2) For open-loop controllers, we cannot automate test oracles since the feedback is not available, and test oracles are manual. Hence, we focus on providing test generation algorithms that develop small effective test suites with high fault revealing ability. We further provide a test case prioriti- zation algorithm to rank the generated test cases based on their fault revealing ability and lower the manual oracle cost. Our test generation and prioritization algorithms are evaluated with several industrial and publicly available Simulink models. Specifically, we showed that fault revealing ability of our our approach outperforms that of Simulink Design Verifier (SLDV), the only test generation toolbox of Simulink and a well-known commercial Simulink testing tool. In addition, using our approach, we were able to detect several real faults in Simulink models from our industry partner, Delphi, which had not been previously found by manual testing based on domain expertise and existing Simulink testing tools. Contributions. The main research contributions in this dissertation are: 1. An automated approach for testing closed-loop controllers that characterize the desired be- havior of such controllers in a set of common requirements, and combines random explo- ration and search to effectively identify the worst-case test scenarios of the controller with respect to each requirement. 2. An automated approach for testing highly configurable closed-loop controllers by account- ing for all their feasible configurations and providing strategies to scale the search to large multi-dimensional spaces relying on dimensionality reduction and surrogate modelling 3. A black-box output-based test generation algorithm for open-loop Simulink models which uses search to maximize the likelihood of presence of specific failure patterns (i.e., anti- patterns) in Simulink output signals. 4. A black-box output-based test generation algorithm for open-loop Simulink models that maximizes output diversity to develop small test suites with diverse output signal shapes and, hence, high fault revealing ability. 5. A test case prioritization algorithm which relies on output diversity of the generated test suites, in addition to the dynamic structural coverage achieved by individual tests, to rank test cases and help engineers identify faults faster by inspecting a few test cases. 6. Two test generation tools, namely CoCoTest and SimCoTest, that respectively implement our test generation approaches for closed-loop and open-loop controllers

    Gravitational waves: search results, data analysis and parameter estimation

    Get PDF
    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity

    Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models

    Get PDF
    Matlab/Simulink is a development and simulation language that is widely used by the Cyber-Physical System (CPS) industry to model dynamical systems. There are two mainstream approaches to verify CPS Simulink models: model testing that attempts to identify failures in models by executing them for a number of sampled test inputs, and model checking that attempts to exhaustively check the correctness of models against some given formal properties. In this paper, we present an industrial Simulink model benchmark, provide a categorization of different model types in the benchmark, describe the recurring logical patterns in the model requirements, and discuss the results of applying model checking and model testing approaches to identify requirements violations in the benchmarked models. Based on the results, we discuss the strengths and weaknesses of model testing and model checking. Our results further suggest that model checking and model testing are complementary and by combining them, we can significantly enhance the capabilities of each of these approaches individually. We conclude by providing guidelines as to how the two approaches can be best applied together.Comment: 10 pages + 2 page reference

    Conformance Testing as Falsification for Cyber-Physical Systems

    Full text link
    In Model-Based Design of Cyber-Physical Systems (CPS), it is often desirable to develop several models of varying fidelity. Models of different fidelity levels can enable mathematical analysis of the model, control synthesis, faster simulation etc. Furthermore, when (automatically or manually) transitioning from a model to its implementation on an actual computational platform, then again two different versions of the same system are being developed. In all previous cases, it is necessary to define a rigorous notion of conformance between different models and between models and their implementations. This paper argues that conformance should be a measure of distance between systems. Albeit a range of theoretical distance notions exists, a way to compute such distances for industrial size systems and models has not been proposed yet. This paper addresses exactly this problem. A universal notion of conformance as closeness between systems is rigorously defined, and evidence is presented that this implies a number of other application-dependent conformance notions. An algorithm for detecting that two systems are not conformant is then proposed, which uses existing proven tools. A method is also proposed to measure the degree of conformance between two systems. The results are demonstrated on a range of models

    Rough set theory applied to pattern recognition of partial discharge in noise affected cable data

    Get PDF
    This paper presents an effective, Rough Set (RS) based, pattern recognition method for rejecting interference signals and recognising Partial Discharge (PD) signals from different sources. Firstly, RS theory is presented in terms of Information System, Lower and Upper Approximation, Signal Discretisation, Attribute Reduction and a flowchart of the RS based pattern recognition method. Secondly, PD testing of five types of artificial defect in ethylene-propylene rubber (EPR) cable is carried out and data pre-processing and feature extraction are employed to separate PD and interference signals. Thirdly, the RS based PD signal recognition method is applied to 4000 samples and is proven to have 99% accuracy. Fourthly, the RS based PD recognition method is applied to signals from five different sources and an accuracy of more than 93% is attained when a combination of signal discretisation and attribute reduction methods are applied. Finally, Back-propagation Neural Network (BPNN) and Support Vector Machine (SVM) methods are studied and compared with the developed method. The proposed RS method is proven to have higher accuracy than SVM and BPNN and can be applied for on-line PD monitoring of cable systems after training with valid sample data

    Realization of Analog Wavelet Filter using Hybrid Genetic Algorithm for On-line Epileptic Event Detection

    Get PDF
    © 2020 The Author(s). This open access work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/.As the evolution of traditional electroencephalogram (EEG) monitoring unit for epilepsy diagnosis, wearable ambulatory EEG (WAEEG) system transmits EEG data wirelessly, and can be made miniaturized, discrete and social acceptable. To prolong the battery lifetime, analog wavelet filter is used for epileptic event detection in WAEEG system to achieve on-line data reduction. For mapping continuous wavelet transform to analog filter implementation with low-power consumption and high approximation accuracy, this paper proposes a novel approximation method to construct the wavelet base in analog domain, in which the approximation process in frequency domain is considered as an optimization problem by building a mathematical model with only one term in the numerator. The hybrid genetic algorithm consisting of genetic algorithm and quasi-Newton method is employed to find the globally optimum solution, taking required stability into account. Experiment results show that the proposed method can give a stable analog wavelet base with simple structure and higher approximation accuracy compared with existing method, leading to a better spike detection accuracy. The fourth-order Marr wavelet filter is designed as an example using Gm-C filter structure based on LC ladder simulation, whose power consumption is only 33.4 pW at 2.1Hz. Simulation results show that the design method can be used to facilitate low power and small volume implementation of on-line epileptic event detector.Peer reviewe
    • …
    corecore