165 research outputs found

    Time-Domain N-continuous GFDM

    Full text link
    Generalized frequency division multiplexing (GFDM) has been a candidate multicarrier scheme in the 5th generation cellular networks for its flexibility of transmitter filter in time and frequency. However, for the circularly shaped transmitter filter, GFDM provides limited performance gain of sidelobe suppression. In this paper, we propose a scheme, called time-domain N-continuous GFDM (TD-NC-GFDM), to reduce the discontinuities caused by the GFDM transmitter filter and achieve promising sidelobe suppression gain. Based on time-domain N-continuous orthogonal frequency devision multiplexing (TD-NC-OFDM), TD-NC-GFDM signal can be obtained by superposing a smooth signal in the time domain. The smooth signal is linearly combined by basis signals in a new basis set related to GFDM transmitter waveform. To eliminate the interference caused by the smooth signal, two solutions are proposed. Firstly, a signal recovery algorithm for reception is adopted at the cost of high complexity. Thus, secondly, to simplify the TD-NC-GFDM receiver, a low-interference TD-NC-GFDM is proposed by redesigning the basis signals. A soft truncation of the basis signals in TD-NC-GFDM is given to design the basis signals in the low-interference TD-NC-GFDM. Then, the smooth signal is aligned with the beginning of the GFDM symbol and is added in the front part of the GFDM symbol. Moreover, for a big number of GFDM subsymbols, theoretical analysis proves that the signal-to-interference ratio (SIR) in TD-NC-GFDM is much higher than that in TD-NC-OFDM. Simulation results shows that TD-NC-GFDM can obtain significant sidelobe suppression performance as well as the low-interference TD-NC-GFDM, which can achieve the same BER performance as the original GFDM.Comment: single column, 19 pages, 10 figure

    Performance Analysis of a Low-Interference N-Continuous OFDM Scheme

    Full text link
    This paper investigates two issues of power spectrum density (PSD) and bit error rate (BER) of an N-continuous orthogonal frequency division multiplexing (NC-OFDM) aided low-interference time-domain scheme, when the smooth signal is designed by the linear combination of basis signals truncated by a window. Based on the relationship between the continuity and sidelobe decaying, the PSD performance is first analyzed and compared, in terms of the highest derivative order (HDO) N and the length of the smooth signal L. Since the high-order derivative of the truncation window has the finite continuity, the N-continuous signal has two finite continuities, which may have different continuous derivative orders. In this case, we develop a close PSD expression by introducing another smooth signal, which is also linearly combined by other basis signals, to explain the sidelobe decaying related to N and L. Then, in the context of BER, considering the multipath Rayleigh fading channel, based on the effect of the delayed tail of the smooth signal to the received signal, we provide a procedure for calculating the BER expressed in the form of an asymptotic summation.Comment: 7 pages, 6 figure

    Power spectrum characterization of systematic coded UW-OFDM systems

    Get PDF
    Unique word (UW)-OFDM is a newly proposed multicarrier technique that has shown to outperform cyclic prefix (CP)-OFDM in fading channels. Until now, the spectrum of UW-OFDM is not thoroughly investigated. In this paper, we derive an analytical expression for the spectrum taking into account the DFT based implementation of the system. Simulations show that the proposed analytical results are very accurate. Compared to CP-OFDM, we show that UW-OFDM has much lower out-of-band (OOB) radiation, which makes it suitable for systems with strict spectral masks, as e. g. cognitive radios. Further, in this paper, we evaluate the effect of the redundant carrier placement on the spectrum

    Time-Frequency Warped Waveforms

    Get PDF
    The forthcoming communication systems are advancing towards improved flexibility in various aspects. Improved flexibility is crucial to cater diverse service requirements. This letter proposes a novel waveform design scheme that exploits axis warping to enable peaceful coexistence of different pulse shapes. A warping transform manipulates the lattice samples non-uniformly and provides flexibility to handle the time-frequency occupancy of a signal. The proposed approach enables the utilization of flexible pulse shapes in a quasi-orthogonal manner and increases the spectral efficiency. In addition, the rectangular resource block structure, which assists an efficient resource allocation, is preserved with the warped waveform design as well.Comment: 4 pages, 5 figures; accepted version (The URL for the final version: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8540914&isnumber=8605392
    corecore