1,170 research outputs found

    Software Grand Exposure: SGX Cache Attacks Are Practical

    Full text link
    Side-channel information leakage is a known limitation of SGX. Researchers have demonstrated that secret-dependent information can be extracted from enclave execution through page-fault access patterns. Consequently, various recent research efforts are actively seeking countermeasures to SGX side-channel attacks. It is widely assumed that SGX may be vulnerable to other side channels, such as cache access pattern monitoring, as well. However, prior to our work, the practicality and the extent of such information leakage was not studied. In this paper we demonstrate that cache-based attacks are indeed a serious threat to the confidentiality of SGX-protected programs. Our goal was to design an attack that is hard to mitigate using known defenses, and therefore we mount our attack without interrupting enclave execution. This approach has major technical challenges, since the existing cache monitoring techniques experience significant noise if the victim process is not interrupted. We designed and implemented novel attack techniques to reduce this noise by leveraging the capabilities of the privileged adversary. Our attacks are able to recover confidential information from SGX enclaves, which we illustrate in two example cases: extraction of an entire RSA-2048 key during RSA decryption, and detection of specific human genome sequences during genomic indexing. We show that our attacks are more effective than previous cache attacks and harder to mitigate than previous SGX side-channel attacks

    Higher-Order Threshold Implementation of the AES S-Box

    Get PDF
    In this paper we present a threshold implementation of the Advanced Encryption Standard’s S-box which is secure against first- and second-order power analysis attacks. This security guarantee holds even in the presence of glitches, and includes resistance against bivariate attacks. The design requires an area of 7849 Gate Equivalents and 126 bits of randomness per S-box execution. The implementation is tested on an FPGA platform and its security claim is supported by practical leakage detection tests

    CacheZoom: How SGX Amplifies The Power of Cache Attacks

    Get PDF
    In modern computing environments, hardware resources are commonly shared, and parallel computation is widely used. Parallel tasks can cause privacy and security problems if proper isolation is not enforced. Intel proposed SGX to create a trusted execution environment within the processor. SGX relies on the hardware, and claims runtime protection even if the OS and other software components are malicious. However, SGX disregards side-channel attacks. We introduce a powerful cache side-channel attack that provides system adversaries a high resolution channel. Our attack tool named CacheZoom is able to virtually track all memory accesses of SGX enclaves with high spatial and temporal precision. As proof of concept, we demonstrate AES key recovery attacks on commonly used implementations including those that were believed to be resistant in previous scenarios. Our results show that SGX cannot protect critical data sensitive computations, and efficient AES key recovery is possible in a practical environment. In contrast to previous works which require hundreds of measurements, this is the first cache side-channel attack on a real system that can recover AES keys with a minimal number of measurements. We can successfully recover AES keys from T-Table based implementations with as few as ten measurements.Comment: Accepted at Conference on Cryptographic Hardware and Embedded Systems (CHES '17

    Review of the NIST Light-weight Cryptography Finalists

    Full text link
    Since 2016, NIST has been assessing lightweight encryption methods, and, in 2022, NIST published the final 10: ASCON, Elephant, GIFT-COFB, Grain128-AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, and Xoodyak. At the time that the article was written, NISC announced ASCOn as the chosen method that will be published as NIST'S lightweight cryptography standard later in 2023. In this article, we provide a comparison between these methods in terms of energy efficiency, time for encryption, and time for hashing.Comment: 6 page

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK
    corecore