7 research outputs found

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    A predictive fault-tolerance framework for IoT systems

    Get PDF
    As Internet of Things (IoT) systems scale, attributes such as availability, reliability, safety, maintainability, security, and performance become increasingly more important. A key challenge to realise IoT is how to provide a dependable infrastructure for the billions of expected IoT devices. A dependable IoT system is one that can defensibly be trusted to deliver its intended service within a given time period. To define a FT-support solution that is applicable to all IoT systems, it is important that error definition is a generic, language-agnostic process, so that FT can be applied as a software pattern. It must also be interoperable, so that FT support can be easily 'plugged into' any existing IoT system, which is facilitated by an adherence to standards and protocols. Lastly, it is important that FT support is, itself, fault tolerant, so that it can be depended on to provide correct support for IoT systems. The work in this thesis considers how real-time and historical data analysis techniques can be combined to monitor an IoT environment and analyse its short- and long-term data to make the system as resilient to failure as possible. Specifically, complex event processing (CEP) is proposed for real-time error detection based on the analysis of stream data in an IoT system, where errors are defined as nondeterministic finite automata (NFA). For long-term error analysis, machine learning (ML) is proposed to predict when an error is likely to occur and mitigate imminent system faults based on previous experience of erroneous system behaviour in the IoT system. The contribution is threefold: (1) a language-agnostic approach to error definition using NFAs, designed to provide 'FT as a service' for easy deployment and integration into existing IoT systems; (2) an implementation of NFAs on a bespoke CEP system, BoboCEP, that provides distributed, resilient event processing at the network edge via active replication; and (3) a ML approach to intelligent FT that can learn from system errors over time to ensure correct long-term FT support. The proposed solution was evaluated using two vertical-farming testbeds and a dataset from a real-world vertical farm. Results showed that the proposed solution could detect and predict the successful detection and recovery of erroneous system behaviours. A performance analysis of BoboCEP was conducted with favourable results

    A review of commercialisation mechanisms for carbon dioxide removal

    Get PDF
    The deployment of carbon dioxide removal (CDR) needs to be scaled up to achieve net zero emission pledges. In this paper we survey the policy mechanisms currently in place globally to incentivise CDR, together with an estimate of what different mechanisms are paying per tonne of CDR, and how those costs are currently distributed. Incentive structures are grouped into three structures, market-based, public procurement, and fiscal mechanisms. We find the majority of mechanisms currently in operation are underresourced and pay too little to enable a portfolio of CDR that could support achievement of net zero. The majority of mechanisms are concentrated in market-based and fiscal structures, specifically carbon markets and subsidies. While not primarily motivated by CDR, mechanisms tend to support established afforestation and soil carbon sequestration methods. Mechanisms for geological CDR remain largely underdeveloped relative to the requirements of modelled net zero scenarios. Commercialisation pathways for CDR require suitable policies and markets throughout the projects development cycle. Discussion and investment in CDR has tended to focus on technology development. Our findings suggest that an equal or greater emphasis on policy innovation may be required if future requirements for CDR are to be met. This study can further support research and policy on the identification of incentive gaps and realistic potential for CDR globally
    corecore