3 research outputs found

    Average Case Network Lifetime on an Interval with Adjustable Sensing Ranges

    Get PDF
    Given n sensors on an interval, each of which is equipped with an adjustable sensing radius and a unit battery charge that drains in inverse linear proportion to its radius, what schedule will maximize the lifetime of a network that covers the entire interval? Trivially, any reasonable algorithm is at least a 2-approximation for this Sensor Strip Cover problem, so we focus on developing an efficient algorithm that maximizes the expected network lifetime under a random uniform model of sensor distribution. We demonstrate one such algorithm that achieves an expected network lifetime within 12 % of the theoretical maximum. Most of the algorithms that we consider come from a particular family of RoundRobin coverage, in which sensors take turns covering predefined areas until their battery runs out

    Maximizing Barrier Coverage Lifetime with Mobile Sensors

    Full text link
    Sensor networks are ubiquitously used for detection and tracking and as a result covering is one of the main tasks of such networks. We study the problem of maximizing the coverage lifetime of a barrier by mobile sensors with limited battery powers, where the coverage lifetime is the time until there is a breakdown in coverage due to the death of a sensor. Sensors are first deployed and then coverage commences. Energy is consumed in proportion to the distance traveled for mobility, while for coverage, energy is consumed in direct proportion to the radius of the sensor raised to a constant exponent. We study two variants which are distinguished by whether the sensing radii are given as part of the input or can be optimized, the fixed radii problem and the variable radii problem. We design parametric search algorithms for both problems for the case where the final order of the sensors is predetermined and for the case where sensors are initially located at barrier endpoints. In contrast, we show that the variable radii problem is strongly NP-hard and provide hardness of approximation results for fixed radii for the case where all the sensors are initially co-located at an internal point of the barrier

    Lean, Green, and Lifetime Maximizing Sensor Deployment on a Barrier

    Full text link
    Mobile sensors are located on a barrier represented by a line segment, and each sensor has a single energy source that can be used for both moving and sensing. Sensors may move once to their desired destinations and then coverage/communication is commenced. The sensors are collectively required to cover the barrier or in the communication scenario set up a chain of communication from endpoint to endpoint. A sensor consumes energy in movement in proportion to distance traveled, and it expends energy per time unit for sensing in direct proportion to its radius raised to a constant exponent. The first focus is of energy efficient coverage. A solution is sought which minimizes the sum of energy expended by all sensors while guaranteeing coverage for a predetermined amount of time. The objective of minimizing the maximum energy expended by any one sensor is also considered. The dual model is then studied. Sensors are equipped with batteries and a solution is sought which maximizes the coverage lifetime of the network, i.e. the minimum lifetime of any sensor. In both of these models, the variant where sensors are equipped with predetermined radii is also examined. Lastly, the problem of maximizing the lifetime of a wireless connection between a transmitter and a receiver using mobile relays is considered. These problems are mainly examined from the point of view of approximation algorithms due to the hardness of many of them
    corecore