2,263 research outputs found

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Computing a rectilinear shortest path amid splinegons in plane

    Full text link
    We reduce the problem of computing a rectilinear shortest path between two given points s and t in the splinegonal domain \calS to the problem of computing a rectilinear shortest path between two points in the polygonal domain. As part of this, we define a polygonal domain \calP from \calS and transform a rectilinear shortest path computed in \calP to a path between s and t amid splinegon obstacles in \calS. When \calS comprises of h pairwise disjoint splinegons with a total of n vertices, excluding the time to compute a rectilinear shortest path amid polygons in \calP, our reduction algorithm takes O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in splinegons, we have devised another algorithm in which the reduction procedure does not rely on the structures used in the algorithm to compute a rectilinear shortest path in polygonal domain. As part of these, we have characterized few of the properties of rectilinear shortest paths amid splinegons which could be of independent interest
    corecore