6,076 research outputs found

    Atomic Effective Pseudopotentials for Semiconductors

    Full text link
    We derive an analytic connection between the screened self-consistent effective potential from density functional theory (DFT) and atomic effective pseudopotentials (AEPs). The motivation to derive AEPs is to address structures with thousands to hundred thousand atoms, as given in most nanostructures. The use of AEPs allows to bypass a self-consistent procedure and to address eigenstates around a certain region of the spectrum (e.g., around the band gap). The bulk AEP construction requires two simple DFT calculations of slightly deformed elongated cells. The ensuing AEPs are given on a fine reciprocal space grid, including the small reciprocal vector components, are free of parameters, and involve no fitting procedure. We further show how to connect the AEPs of different bulk materials, which is necessary to obtain accurate band offsets. We derive a total of 20 AEPs for III-V, II-VI and group IV semiconductors and demonstrate their accuracy and transferability by comparison to DFT calculations of strained bulk structures, quantum wells with varying thickness, and semiconductor alloys.Comment: 10 pages, 5 figures, submitted to PR

    Landau levels in quasicrystals

    Full text link
    Two-dimensional tight-binding models for quasicrystals made of plaquettes with commensurate areas are considered. Their energy spectrum is computed as a function of an applied perpendicular magnetic field. Landau levels are found to emerge near band edges in the zero-field limit. Their existence is related to an effective zero-field dispersion relation valid in the continuum limit. For quasicrystals studied here, an underlying periodic crystal exists and provides a natural interpretation to this dispersion relation. In addition to the slope (effective mass) of Landau levels, we also study their width as a function of the magnetic flux per plaquette and identify two fundamental broadening mechanisms: (i) tunneling between closed cyclotron orbits and (ii) individual energy displacement of states within a Landau level. Interestingly, the typical broadening of the Landau levels is found to behave algebraically with the magnetic field with a nonuniversal exponent.Comment: 14 pages, 9 figure

    Crystal Structures and Electronic Properties of Haloform-Intercalated C60

    Full text link
    Using density functional methods we calculated structural and electronic properties of bulk chloroform and bromoform intercalated C60, C60 2CHX3 (X=Cl,Br). Both compounds are narrow band insulator materials with a gap between valence and conduction bands larger than 1 eV. The calculated widths of the valence and conduction bands are 0.4-0.6 eV and 0.3-0.4 eV, respectively. The orbitals of the haloform molecules overlap with the π\pi orbitals of the fullerene molecules and the p-type orbitals of halogen atoms significantly contribute to the valence and conduction bands of C60 2CHX3. Charging with electrons and holes turns the systems to metals. Contrary to expectation, 10 to 20 % of the charge is on the haloform molecules and is thus not completely localized on the fullerene molecules. Calculations on different crystal structures of C60 2CHCl3 and C60 2CHBr3 revealed that the density of states at the Fermi energy are sensitive to the orientation of the haloform and C60 molecules. At a charging of three holes, which corresponds to the superconducting phase of pure C60 and C60 2CHX3, the calculated density of states (DOS) at the Fermi energy increases in the sequence DOS(C60) < DOS(C60 2CHCl3) < DOS(C60 2CHBr3).Comment: 11 pages, 7 figures, 4 table

    Effects of large disorder on the Hofstadter butterfly

    Full text link
    Motivated by the recent experiments on periodically modulated, two dimensional electron systems placed in large transversal magnetic fields, we investigate the interplay between the effects of disorder and periodic potentials in the integer quantum Hall regime. In particular, we study the case where disorder is larger than the periodic modulation, but both are small enough that Landau level mixing is negligible. In this limit, the self-consistent Born approximation is inadequate. We carry extensive numerical calculations to understand the relevant physics in the lowest Landau level, such as the spectrum and nature (localized or extended) of the wave functions. Based on our results, we propose a qualitative explanation of the new features uncovered recently in transport measurements.Comment: 15 pages, 13 figures, several pictures have been shrunk to comply with the size requirement

    The geometry of the double gyroid wire network: quantum and classical

    Get PDF
    Quantum wire networks have recently become of great interest. Here we deal with a novel nano material structure of a Double Gyroid wire network. We use methods of commutative and non-commutative geometry to describe this wire network. Its non--commutative geometry is closely related to non-commutative 3-tori as we discuss in detail.Comment: pdflatex 9 Figures. Minor changes, some typos and formulation

    Temperature-dependent spin gap and singlet ground state in BaCuSi2O6

    Full text link
    Bulk magnetic measurements and inelastic neutron scattering were used to investigate the spin-singlet ground state and magnetic gap excitations in BaCuSi2O6, a quasi-2-dimensional antiferromagnet with a bilayer structure. The results are well described by a model based on weakly interacting antiferromagnetic dimers. A strongly temperature-dependent dispersion in the gap modes was found. We suggest that the observed excitations are analogous to magneto-excitons in light rare-earth compounds, but are an intrinsic property of a simple Heisenberg Hamiltonian for the S=1/2 magnetic bilayer.Comment: 10 pages, 4 figures, REVTeX and PS for text, PS for figures direct download: http://papillon.phy.bnl.gov/preprints/bacusio.htm
    corecore