2,352 research outputs found

    Orthogonal Wavelets via Filter Banks: Theory and Applications

    Get PDF
    Wavelets are used in many applications, including image processing, signal analysis and seismology. The critical problem is the representation of a signal using a small number of computable functions, such that it is represented in a concise and computationally efficient form. It is shown that wavelets are closely related to filter banks (sub band filtering) and that there is a direct analogy between multiresolution analysis in continuous time and a filter bank in discrete time. This provides a clear physical interpretation of the approximation and detail spaces of multiresolution analysis in terms of the frequency bands of a signal. Only orthogonal wavelets, which are derived from orthogonal filter banks, are discussed. Several examples and applications are considered

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    Wavelets: mathematics and applications

    Full text link
    The notion of wavelets is defined. It is briefly described {\it what} are wavelets, {\it how} to use them, {\it when} we do need them, {\it why} they are preferred and {\it where} they have been applied. Then one proceeds to the multiresolution analysis and fast wavelet transform as a standard procedure for dealing with discrete wavelets. It is shown which specific features of signals (functions) can be revealed by this analysis, but can not be found by other methods (e.g., by the Fourier expansion). Finally, some examples of practical application are given (in particular, to analysis of multiparticle production}. Rigorous proofs of mathematical statements are omitted, and the reader is referred to the corresponding literature.Comment: 16 pages, 5 figures, Latex, Phys. Atom. Nuc

    Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings

    Get PDF
    The class of generalized shearlet dilation groups has recently been developed to allow the unified treatment of various shearlet groups and associated shearlet transforms that had previously been studied on a case-by-case basis. We consider several aspects of these groups: First, their systematic construction from associative algebras, secondly, their suitability for the characterization of wavefront sets, and finally, the question of constructing embeddings into the symplectic group in a way that intertwines the quasi-regular representation with the metaplectic one. For all questions, it is possible to treat the full class of generalized shearlet groups in a comprehensive and unified way, thus generalizing known results to an infinity of new cases. Our presentation emphasizes the interplay between the algebraic structure underlying the construction of the shearlet dilation groups, the geometric properties of the dual action, and the analytic properties of the associated shearlet transforms.Comment: 28 page
    corecore