10,218 research outputs found

    Short Term Electricity Forecasting Using Individual Smart Meter Data

    Get PDF
    AbstractSmart metering is a quite new topic that has grown in importance all over the world and it appears to be a remedy for rising prices of electricity. Forecasting electricity usage is an important task to provide intelligence to the smart gird. Accurate forecasting will enable a utility provider to plan the resources and also to take control actions to balance the electricity supply and demand. The customers will benefit from metering solutions through greater understanding of their own energy consumption and future projections, allowing them to better manage costs of their usage. In this proof of concept paper, our contribution is the proposal for accurate short term electricity load forecasting for 24hours ahead, not on the aggregate but on the individual household level

    A Single Scalable LSTM Model for Short-Term Forecasting of Massive Electricity Time Series

    Get PDF
    This article belongs to the Special Issue Forecasting in Electricity Markets with Big Data and Artificial Intelligence.Most electricity systems worldwide are deploying advanced metering infrastructures to collect relevant operational data. In particular, smart meters allow tracking electricity load consumption at a very disaggregated level and at high frequency rates. This data opens the possibility of developing new forecasting models with a potential positive impact on electricity systems. We present a general methodology that can process and forecast many smart-meter time series. Instead of using traditional and univariate approaches, we develop a single but complex recurrent neural-network model with long short-term memory that can capture individual consumption patterns and consumptions from different households. The resulting model can accurately predict future loads (short-term) of individual consumers, even if these were not included in the original training set. This entails a great potential for large-scale applications as once the single network is trained, accurate individual forecast for new consumers can be obtained at almost no computational cost. The proposed model is tested under a large set of numerical experiments by using a real-world dataset with thousands of disaggregated electricity consumption time series. Furthermore, we explore how geo-demographic segmentation of consumers may impact the forecasting accuracy of the model.The authors gratefully acknowledge the financial support from the Spanish government through projects MTM2017-88979-P and PID2019-108311GB-I00/AEI/10.13039/501100011033, and from Fundación Iberdrola through “Ayudas a la Investigación en Energía y Medio Ambiente 2018”

    Cluster-based Aggregate Forecasting for Residential Electricity Demand using Smart Meter Data

    Get PDF
    While electricity demand forecasting literature has focused on large, industrial, and national demand, this paper focuses on short-term (1 and 24 hour ahead) electricity demand forecasting for residential customers at the individual and aggregate level. Since electricity consumption behavior may vary between households, we first build a feature universe, and then apply Correlation-based Feature Selection to select features relevant to each household. Additionally, smart meter data can be used to obtain aggregate forecasts with higher accuracy using the so-called Cluster-based Aggregate Forecasting (CBAF) strategy, i.e., by first clustering the households, forecasting the clusters' energy consumption separately, and finally aggregating the forecasts. We found that the improvement provided by CBAF depends not only on the number of clusters, but also more importantly on the size of the customer base

    Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting

    Full text link
    The smart metering infrastructure has changed how electricity is measured in both residential and industrial application. The large amount of data collected by smart meter per day provides a huge potential for analytics to support the operation of a smart grid, an example of which is energy demand forecasting. Short term energy forecasting can be used by utilities to assess if any forecasted peak energy demand would have an adverse effect on the power system transmission and distribution infrastructure. It can also help in load scheduling and demand side management. Many techniques have been proposed to forecast time series including Support Vector Machine, Artificial Neural Network and Deep Learning. In this work we use Long Short Term Memory architecture to forecast 3-day ahead energy demand across each month in the year. The results show that 3-day ahead demand can be accurately forecasted with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper proposes way to quantify the time as a feature to be used in the training phase which is shown to affect the network performance
    • …
    corecore