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Abstract—While electricity demand forecasting literature has
focused on large, industrial, and national demand, this paper
focuses on short-term (1 and 24 hour ahead) electricity de-
mand forecasting for residential customers at the individual
and aggregate level. Since electricity consumption behavior may
vary between households, we first build a feature universe, and
then apply Correlation-based Feature Selection to select features
relevant to each household. Additionally, smart meter data can
be used to obtain aggregate forecasts with higher accuracy
using the so-called Cluster-based Aggregate Forecasting (CBAF)
strategy, i.e., by first clustering the households, forecasting the
clusters’ energy consumption separately, and finally aggregating
the forecasts. We found that the improvement provided by CBAF
depends not only on the number of clusters, but also more
importantly on the size of the customer base.

I. INTRODUCTION

The exploitation of renewable energy, the integration of
distributed energy resources at the distribution level, and
the electrification of private transportation are considered as
suitable governmental policies to tackle some of the problems
of advanced societies, such as reducing CO2 emissions or
increasing energy efficiency [11]. In recent years, these so-
lution concepts started to pose new challenges to the existing
power grids, whose hierarchical, centrally-controlled structure
has remained unchanged for a century. For example, the
exploitation of renewable sources such as solar or wind may be
problematic due to their variable and intermittent nature [38],
while the integration of distributed energy resources may cause
congestion and atypical power flows that threaten system’s
reliability [27]. On the other hand, as a part of smart grid
initiatives, smart meters have been widely deployed to under-
stand the energy consumption behavior of the demand side.
More specifically, it contains the information of how end users
consume electricity in near real time. However, this also means
that utility companies worldwide face challenges on managing
big (smart meter) data on their hands of at least big volume,
big velocity, and big value, whose benefits are waiting to be
discovered [39].

In this context, energy consumption prediction for different
time horizons (e.g., 1 hour ahead, 1 day ahead, 1 month ahead)
and space scales (e.g., distribution transformer, individual
house-level meter) is also becoming crucial for many appli-
cations, such as frequency and voltage regulation, demand re-
sponse (to estimate customer’s baseline [37]), and autonomous
energy and emergency management [28], [40]. While long-
term load forecasting (1–10 years ahead) is important for

A preliminary version of this work has appeared in [19].

planning both, transmission and distribution networks, short-
term load forecasting (hours to days ahead) is important for the
demand response, online scheduling, and security functions of
an energy management system. In this paper, we use the terms
energy consumption (or demand) and load interchangeably.

Many techniques for energy consumption prediction have
been inspired by research on statistical and machine learning,
from Linear Regression [16], [30], ARMA [18], [34], and
Generalized Additive Models [4], [10], [41] to Neural Net-
works [3], [15], [23] and Support Vector Regression [9], [32].
However, these techniques have been typically used at very
large space scales, such as predicting the electrical load of a
market segment serving thousands of customers or even an
entire country.

In this paper, we focus on forecasting electricity consump-
tion of residential customers, leveraging smart meter data.
Since energy consumption behavior might vary among house-
holds, a feature that are relevant for one house might not be
relevant for others. Additionally, we consider a large number
of houses. Thus, feature selection has to be done automatically.
To this end, we first build a (large) feature universe, and then
automatically determine the relevant features for each house
using the Correlation-based Feature Selection [14], which
selects subset of features set that are highly correlated with the
response variable while having low inter-correlation between
each other (see Section III-A).

Next, we found that smart meter data can be used to
provide an aggregate forecast with higher accuracy, compared
to traditional methods, using the so-called Cluster-based Ag-
gregate Forecasting (or CBAF for short) by first clustering the
households, forecasting the clusters separatelty, and finally, ag-
gregating the forecasts. We find that the improvement provided
by the CBAF strategy (compared to the traditional aggregate
forecasts) depends not only on the number of the clusters, but
more importantly on the size of the customer base. That is,
the larger the customer base, the higher the improvement (see
Section IV-B). Thus, our finding offers additional insight to
the practitioners who wish to implement this strategy in the
real world.

The paper is organized as follows. In Section II we describe
the dataset and evaluation metrics. In Section III we present the
features, methods, and experimental evaluations on forecasting
energy consumption of a large number of households at the
individual level. In Section IV we present insights gained from
CBAF. In Section V we review related works in the area, and
finally, we conclude in Section VI.
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II. DATASET AND EVALUATION METRICS

A. Dataset

We use the detailed data underlying electricity consumption
behaviour provided in anonymized format by the Commission
for Energy Regulation (CER) in Ireland.1 This dataset is the
result of the Electricity Customer Behaviour Trials (CBTs),
which took place during 2009 and 2010 with over 5,000
Irish homes and businesses participating. The participants in
the trials had an electricity smart meter installed in their
homes/premises, which collected energy consumption mea-
surements every half hour. The objective of the trial was
evaluating the impact that different Time-Of-Use (TOU) tariffs
have on the consumption behaviour.

Although the CER has carefully cleaned the data (e.g.,
multiple imputation for the missing values—see [35] Appendix
2), there are still a small number of missing values found in
the dataset. In this work, unless stated otherwise, we choose
customers who have no missing values in their measurements.
Furthermore, to avoid bias due to the TOU tariffs, we consider
only the residential households in the control group of the
trial, i.e.,, those customers with a flat rate that did not change
their consumption behavior in response to a TOU tariff. This
results in the selection of 782 customers. The measurements
are aggregated into hourly timeslots. For all results presented
in this paper, we use the first year (from July 2009 to June
2010) as the training set, and the remaining 6 months (from
July 2010 to December 2010) as the test set.

B. Evaluation metrics

In the literature, there are three widely used metrics to
evaluate the accuracy of a forecasting algorithm: the Mean
Absolute Percentage Error (MAPE), the Mean Absolute Error
(MAE), and the Root Mean Square Error (RMSE). Given a
time series S = {s1, s2, . . . , sn} of observed consumption
values and the estimation produced by forecasting algorithm
Ŝ = {ŝ1, ŝ2, . . . , ŝn}, the MAPE is defined as:

MAPE(S, Ŝ) =
1

n

n∑
t=1

∣∣∣∣st − ŝtst

∣∣∣∣ (1)

The MAPE is an intuitive metric. However, it has a major
drawback, i.e., it is not robust to the division by values
approaching zero. Many households in the dataset have zero
consumption on certain time slots, which makes the MAPE
undefined, Furthermore, it is quite common to have households
with very small consumption values, which makes the MAPE
very large, approaching infinity.

Unlike the MAPE, the MAE and the RMSE do not suffer
from the division by values approaching zero, since the MAE
is defined as

MAE(S, Ŝ) =
1

n

n∑
t=1

(st − ŝt), (2)

and the RMSE is defined as

1http://www.ucd.ie/issda/data/commissionforenergyregulationcer/

RMSE(S, Ŝ) =

√√√√ 1

n

n∑
t=1

(st − ŝt)2. (3)

However, they are scale-dependent metrics. Since the average
hourly consumption of households in the dataset varies be-
tween 0.05 kWh and 3.83 kWh, we need scale-independent
metrics to aggregate the forecasting error of these different
households. Moreover, scale-independent metrics can be use-
ful to compare not only the forecasting error of different
households, but also the forecasting error of different temporal
aggregations or consumer groups.2

To this end, we suggest to use other metrics that are
both, scale-independent, and robust to the division by values
approaching zero, namely the Normalized Mean Absolute
Error (NMAE) and the Normalized Root Mean Square Error
(NRMSE). The NMAE is defined as

NMAE(S, Ŝ) =
MAE(S, Ŝ)

||S||1
=

∑n
t=1 |st − ŝt|∑n

t=1 |st|
, (4)

and the NRMSE is defined as

NRMSE(S, Ŝ) =
RMSE(S, Ŝ)

||S||2
=

√∑n
t=1(st − ŝt)2∑n

t=1 s
2
t

. (5)

While one zero measurement is enough to make the MAPE
undefined (or approaches infinity), all measurements need to
be zero to make the NMAE or the NRMSE undefined.

III. FORECASTING A LARGE NUMBER OF HOUSEHOLDS

A. Features

There are two important challenges in selecting features for
residential electricity load forecasting. First, different houses
might have different energy consumption behavior. Thus, fea-
tures that are relevant to one house might not be relevant
to other houses. Second, we have a large number of houses.
Therefore, feature selection should be done automatically.

To solve both challenges, we first build a (large) feature
universe and then apply a feature selection algorithm to select
features that are relevant to each house. We consider both,
historical load and contextual features. To forecast the load at
time (or hour) t, for 1 hour ahead forecasting, we consider
the historical load data from time t − 1 to t − 336, i.e.,
{st−1, st2 , . . . , st−336}.3 While for 24 hour ahead forecasting,
we consider the historical load data from time t−24 to t−336
(since the historical load data from time t− 1 to t− 23 is not
available in this case).

The CER dataset does not contain any information about
the house or the persons who live in the house. Thus, for
contextual features, we consider day of week, hour of day,
and weather information. Since there is no information about
the city/location of each house, we crawl the historical weather

2Apart from MAPE, MAE, and RMSE, there are also other options, such
as the adjusted error [13]. See Section V for the discussion about the adjusted
error.

3Of course, longer time duration can also be considered here, in the price
of memory and computation cost.
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Fig. 1: MLP model evaluation (using NRMSE) using different
number of hidden layers and learning rates α on randomly
chosen 25 households. The lower the better. In the end, we
use one hidden layer and α = 0.1.

data of the three biggest cities in Ireland, i.e., Dublin, Cork,
and Limerick.4 We use 48 hours historical temperature and
humidity data,5 from time t − 1 to t − 48 for 1 hour ahead
forecasting, and from time t− 24 to t− 71 for 24 hour ahead
forecasting. Additionally, we also include the mean and the
median of those three cities to the feature set.

Up to this point, our feature universe contains approxi-
mately 800 variables. Next, we apply Correlation-based Fea-
ture Selection (CFS) to each house. This method selects subset
of features that are highly correlated with the response variable
while having low inter-correlation between each other [14]. As
a result, we obtain a (much) reduced subset of relevant features
for each house.

B. Learning Algorithms

Various learning algorithms have been used to forecast
large-scale electricity demand. Recent literature suggests Sup-
port Vector Regression (SVR) as one of the most effective
models to forecast future energy consumption [9], [32]. Other
well established methods are Linear Regression and Multi-
Layer Perceptron (MLP). In this section, we briefly describe
our model setup.

1) Linear Regression configuration: A linear model to
predict the load at time t is defined as:

y = θTx+ ε (6)

where θ is the vector of coefficients, x is the feature vector,
and ε is the error term. We estimate the coefficients and the
error term of the linear model using ridge regression (other
methods, of course, can also be used).

2) MLP configuration: We use one hidden layer with
sigmoid activation functions. The output can be written as
y = W 2×Θ(W 1 ·x+B1)+B2 where x is the input vector, y
is the output value, W 1, W 2, B1, and B2 are the coefficient
matrices, and Θ is the sigmoid operator. Each component xj
of the input vector x is standardized, i.e., x∗j = (xj −µj)/σj ,
where µj is the mean and σj is the standard deviation of the
values in the jth dimension. To avoid overfitting, a validation

4We obtained the weather-related data from http://www.wunderground.com.
5Apart from temperature, humidity has also been used in real-world

implementation to forecast electricity demand. See, e.g., [22].

(a) (b)

(c)

Fig. 2: SVR model evaluation for individual forecasting on the
randomly chosen 25 households: (a) average NRMSE on the
validation set given different C and γ, (b) standard deviation
on the average, (c) average running time. The lower the better.
In the end, we choose C = 100 and γ = 0.01. While there are
some other settings which yield better NRMSE, they typically
require considerably longer running time.

set is constructed by randomly selecting 30% of the instances
in the training set. The coefficient matrices are learnt using
gradient descent, with learning rate of α = 0.1 (see the
evaluation of different hidden layers and learning rates in
Figure 1). The stopping criterion is triggered when the error on
the validation set (calculated after each epoch) has increased
20 times in a row.

3) SVR configuration: SVR is a regression method based
on Support Vector Machine (SVM) that has been developed
in 1996 by Vapnik (see also the tutorial by Smola and
Schlkopf [33]). In this work, we use the SVR implementation
provided by the LIBSVM library developed by Chang and
Lin [7].

SVR must be provided with the SVM error cost C and
a kernel function. For the kernel function, we use the RBF
kernel, similar to [9]. Next, to find suitable values for C and
γ, we split the training set into two parts: a sub-training set
and a validation set. The SVR is trained on the sub-training
set, and evaluated on the validation set. For C we test a set of
values {1, 10, 102, 103, 104, 105}, while for γ we test a set of
values {0, 0.01, 0.1, 1}.

For individual load forecasting, we find that different values
of C and γ do not result in significant NRMSE differences (see
Figure 2a and 2b) . However, they strongly affect the compu-
tation time, which dramatically increase when C ≥ 1000 or
γ ≥ 0.1 (see Figure 2c). Thus, for individual forecast, we use
C = 100 and γ = 0.01. On the other hand, for aggregate
forecast, different settings of C and γ result in significant
differences in terms of NRMSE (see Figure 3). We found that
C = 1000 and γ = 1 is the best setting.

C. Results

In addition to features and learning algorithms, we also
explore pth root transformation. That is, instead of modeling



Fig. 3: SVR model evaluation (measured by average NRMSE)
for aggregate forecasting. The lower the better.

the response variable (st) as is, we model its pth root (s1/pt ),
and then transform the forecasted value back to its original
dimension by raising it to the pth power ((ŝt)p). Since the
distribution of household energy consumption are skewed to
the left toward zero, pth root transformation could help to make
it more normal and easier to model.

As a comparison to the three learning algorithms described
in Section III, we also employ Seasonal ARIMA for both, 1
hour and 24 hour ahead forecasting. Before using Seasonal
ARIMA, however, we need to properly identify the order of the
autoregressive, integrated, and moving average terms (for both,
the seasonal and non-seasonal parts). Similar to the challenges
that we face in the feature selection procedure, there are two
important challenges here. First, since different households
might have different energy consumption behavior, we need
to identify the right orders for each household (i.e., the orders
that are suitable for one household might not be suitable for
others). Second, we have a large number of households. Thus,
the identification procedure need to be done automatically.
To this end, we apply the stepwise model space exploration
algorithm outlined in [20] to each household. Starting from
a small set of models, the algorithm iteratively explore the
“neighbors” of the best model found so far. The algorithm
stops when it cannot find a model better than the current best
model.

Tables I and II show the performance of Seasonal Arima
(SARIMA) using the setting described above, and Linear
Regression (LR), Multi-Layer Perceptron (MLP), and Sup-
port Vector Regression (SVR) using the setting described in
Section III-A and III-B. Both tables show that the pth root
transformation mostly improves the NMAE of the models. The
tables also show that, in this case, the three learning algorithms
LR, MLP, and SVR significantly outperform SARIMA.

IV. CLUSTER-BASED AGGREGATE FORECASTING

In order to provide an aggregate forecast of a set of
individually-monitored households, it is possible to define two
extreme strategies: (1) aggregate the energy consumption of all
households into one time series (the aggregate consumption),
then forecast the aggregate consumption, and (2) forecast the
energy consumption of each household separately, then aggre-
gate the forecasts. Since the patterns in aggregate consumption
are more regular than that of individual consumption (see also
Figure 4), intuitively, strategy (1) should outperform strategy

TABLE I: Average NRMSE and NMAE (with its 95% confi-
dence interval) of SARIMA, LR, MLP, SVR for 1 hour ahead
load forecasting at the level of the individual customer. Root
transformation (st1/p, with p > 1) can be used to improve
NMAE.

p = 1 p = 2 p = 4

N
R

M
SE

SARIMA 0.582 ± 0.007 0.582 ± 0.007 0.589 ± 0.007
LR 0.557 ± 0.007 0.562 ± 0.007 0.571 ± 0.007
MLP 0.575 ± 0.008 0.569 ± 0.007 0.578 ± 0.008
SVR 0.573 ± 0.008 0.571 ± 0.007 0.572 ± 0.007

N
M

A
E SARIMA 0.534 ± 0.009 0.485 ± 0.008 0.478 ± 0.007

LR 0.495 ± 0.009 0.461 ± 0.007 0.456 ± 0.007
MLP 0.535 ± 0.014 0.477 ± 0.009 0.468 ± 0.008
SVR 0.461 ± 0.007 0.448 ± 0.007 0.452 ± 0.007

TABLE II: Average NRMSE and NMAE (with its 95% confi-
dence interval) of SARIMA, LR, MLP, SVR for 24 hour ahead
load forecasting at the level of the individual customer. Root
transformation (st1/p, with p > 1) can be used to improve
NMAE.

p = 1 p = 2 p = 4

N
R

M
SE

SARIMA 0.671 ± 0.007 0.674 ± 0.007 0.688 ± 0.008
LR 0.607 ± 0.007 0.613 ± 0.007 0.623 ± 0.008
MLP 0.633 ± 0.008 0.630 ± 0.008 0.638 ± 0.008
SVR 0.628 ± 0.008 0.628 ± 0.008 0.629 ± 0.008

N
M

A
E SARIMA 0.658 ± 0.011 0.598 ± 0.009 0.588 ± 0.008

LR 0.555 ± 0.010 0.515 ± 0.008 0.507 ± 0.008
MLP 0.601 ± 0.016 0.541 ± 0.010 0.527 ± 0.009
SVR 0.512 ± 0.008 0.501 ± 0.008 0.508 ± 0.008

(2). Figure 5 shows clearly that the forecasting error decreases
as the aggregation size increases.

In this section, we evaluate an alternative strategy (3),
where we segment the households into k clusters, aggregate the
energy consumption of the households in each cluster, forecast

(a) Aggregate consumption (782 households).

(b) Example consumption of a household (id 1002).

Fig. 4: A sample of hourly energy consumption from the CER
dataset, from Monday, 2009-09-07 to Sunday, 2009-09-13.



Fig. 5: The NRMSE of LR and SVR for 1 hour ahead
forecasting (the lower the better). Forecasting error decreases
as the aggregation size increases.

each cluster separately, and finally aggregate the k forecasts
into one aggregate forecast. Strategy (1) and (2) can also be
seen as some special cases of strategy (3), where k = 1 and
k = N = total customers, respectively. We refer to strategy
(3) as the Cluster-based Aggregate Forecasting (CBAF). See
Figure 6 for an illustration. The contributions of this section
are: (i) we provide clustering algorithms to form clusters with
some predefined/targeted characteristics (see Section IV-A),
whereas previous works offer only little interpretation to the
characteristics of the resulting clusters, (ii) we find that the
improvement provided by the CBAF strategy depends not only
on the number of clusters, but also on the size of the customer
base (see Section IV-B).

A. Clustering algorithms

In order to investigate the effectiveness of CBAF, we define
several clustering methods with clear objective, targeting a
specific property of the resulting clusters:

• Max-AC: This method aims to maximize the auto-
correlation of the energy consumption of the clusters.
More specifically, this method uses the greedy cluster-
ing technique proposed in Algorithm 1 to find clusters
such that the auto-correlation of the load of each
cluster is maximized. Let ac(S) be the average auto-
correlation (up to a certain lag) of time series S.6 In
addition, we define a cluster as a set of customers, and
Sc as the aggregate consumption time series of cluster
c. Then this method uses Algorithm 1 by defining

Φ(c, x) = ac(Sc∪{x})− ac(Sc),

where x is a customer. As a consequence, customer x
is assigned to a cluster where x provides the highest
improvement to the auto-correlation of the clusters’
energy consumption.

• Min-Stdev: This method aims to minimize the
fluctuation in the clusters’ energy consumption, which
often becomes the main challenge to predict. In par-
ticular, it aims to minimize the standard deviation of
the clusters’ energy consumption. Let sd(S) be the
standard deviation of time series S. As in the Max-AC
case, we define a cluster as a set of customers, and Sc

6In our implementation, we compute the auto-correlation up to lag 168 (or,
1 week preceding the target time). Other lags, however, can also be used.

(a) Strategy 1: aggregate the energy consumption of all households into one
time series (aggregate demand), then forecast the aggregate consumption.

(b) Strategy 2: forecast the energy consumption of each household separately,
then aggregate the forecasts.

(c) Strategy 3: segment the households into k clusters, aggregate the energy
consumption of households in each cluster, forecast the demand of each cluster
separately, and finally aggregate the k forecasts into one aggregate forecast.

Fig. 6: Three strategies made available by smart meter data to
forecast the aggregate demand of residential customers.

as the aggregate consumption time series of cluster c.
Then this method uses Algorithm 1 by defining

Φ(c, x) = (sd(Sc)− sd(Sc∪{x})) · |c|,

where x is a customer. As a consequence, customer x
is assigned to a cluster where x minimizes the standard
deviation of the cluster’s aggregate consumption. Note
that in the evaluation function Φ, we multiply the
standard deviation difference by |c| so as to have a
weighted difference, with respect to the size of the
original cluster c (before x is added).

• Max-Sim: This method aims to maximize the similar-
ity among customers within a cluster. Unlike previous



Algorithm 1: Generic greedy clustering algorithm
Input: number of clusters k, customer set X
Output: cluster configuration C = {c1, . . . , ck}

1 {x1, . . . , xk} ← draw randomly k customers from X
2 for i ∈ {1, . . . , k} do ci ← xi
/*initialization*/

3 while X 6= ∅ do
4 x← draw randomly a customer from X
5 c∗ ← arg maxc∈C Φ(c, x)
6 c∗ ← c∗ ∪ {x}
7 return C

two methods, here we apply KMeans clustering algo-
rithm to customer’s 24-hour load profiles, where each
hour is characterized by the distribution (or histogram)
of the amount of energy consumed in that hour.
More specifically, for each hour, we define a feature
vector of length 21. For the first 20 elements, the
ith element is the frequency of consumption between
(i− 1)× 0.5 kWh and i× 0.5 kWh. The 21st element
is the frequency of consumption greater than 10 kWh.
Finally, we apply KMeans on the customers’ feature
vectors, where each feature vector of a customer is of
length 24× 21 = 504.

• Random: Each customer is randomly assigned to any
of the clusters with the equal probability.

In this experiment, we enlarge our dataset to include all
residential customers who have no missing values. This results
in the selection of 3,639 customers. Figures 7 shows the
NRMSE, the NMAE and the MAPE of LR, MLP and SVR, for
a different number of clusters k. When k = 1, all customers
are aggregated into a single cluster and a single prediction
is performed. As k increases, more clusters are created (k
clusters to be precise), and the consumption of each cluster is
forecasted separately. The forecasts are then aggregated into a
single aggregate forecast. Note that, k = 1 represents strategy
(1), k = N = 3639 strategy (2), and 1 < k < N the CBAF
strategy, which is the focus of this section. We do not show
the forecasting result beyond k = 128 as the error continues
to increase beyond that of k = 1. This fact clearly shows that,
strategy (1) outperforms strategy (2). Additionally, there are
some 1 < k < N for which the forecasting error is lower than
that of k = 1. This fact confirms that CBAF indeed can be
used to improve the accuracy of aggregate forecasting.

Interestingly, all clustering methods that we introduced
(including Random) seem to be able to provide a lower
forecasting error than that of strategy (1). Although in some
cases Max-AC provides the lowest error curve as it aims
to maximize the auto-correlation of the energy consumption
within the clusters,7 the accuracies of these clustering methods
are often marginally different. Therefore, choosing one clus-
tering method against the others (or implementing the CBAF
strategy) in a real-world scenario needs a more careful analysis,
in the sense that we need to consider whether the advantage
brought by a particular clustering method is greater than the

7Time series with higher auto-correlation is typically easier to forecast since
it shows greater relationship between the current and the past values.

cost of implementing it.

B. The Impact of the Size of the Customer Base

Hitherto one might think that the improvement obtained
by CBAF depends on the number of clusters, k. While this
insight has been confirmed by Figure 7, there is more to it
than that since it turned out that the size of the customer base
also plays an important role in the improvement. We repeat
the experiments using different sized customer bases: 500,
1,000, and 2,000 (drawn randomly from the original dataset
of 3,639 customers). Note that, for the same k, a different size
of customer bases implies different cluster sizes.

Figure 8 shows the improvement gained by SVR when we
perform CBAF on different size of customer bases. While
there is almost no positive improvement in the case of 500
customers (no matter which clustering method is used), some
improvement may be noticed in the case of 1,000 customers
or more. In general, the improvement increases with the size
of the customer base.

If we assume that a “good” forecast models the true
observation and a white noise (zero mean and finite variance),
then it means that combining several good forecasts from
several clusters into one aggregate forecast could neutralize
the white noise. Thus, there is a trade-off between the size
and the number of clusters. The size of the clusters should
be big enough for the algorithm to deliver a reasonably good
prediction,8 but not too big that there are not enough clusters
(hence, predictions) to cancel out the noise.

In addition, since the number of clusters, k, strongly influ-
ence the cluster size, one might wonder whether it is possible
to set a priori the best value for k. Because characteristics
of a customer base vary from one to another, the right k
should be determined using cross validation on the training set.
Apart from that, the experiment suggests that the improvement
offered by CBAF will increase further as we incorporate more
and more customers (due to the possibility to increase both,
the number and the size of the clusters).

V. RELATED WORK

Electricity demand forecasting has been widely studied in
the literature. In addition to studies that focusing on the fore-
casting methodology,9 researchers have also studied particular
geographical areas or countries [2], [5], [6], [26], [29], [31].
Competitions have also been organized [9], [17]. All of them,
however, focused on demand forecasting on a large scale,
either at the regional or national level.

Due to the recent deployment of smart meters, forecasting
energy demand at the residential level is a relatively new area.
The work by Ghofrani et al. [12] can be considered as one
of the earliest works in the field, where they forecast the
electricity demand of a single household, using one day of
training and one day of test data. Since then, some interesting
results have been published. Tidemann et al., for example,

8See also Figure 5 about the relation between forecast accuracy and
customer aggregation size.

9We have mentioned the references in Section I, i.e., Linear Regression [16],
[30], ARMA [18], [34], Generalized Additive Models [4], [10], [41], Neural
Networks [3], [15], [23] and Support Vector Regression [9], [32].
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Fig. 7: The NRMSE, the NMAE and the MAPE for a different number of clusters k (the lower the better). Total number of
customers, N = 3639. The best accuracy is obtained when 1 < k < 3639, which shows the effectiveness of CBAF.

showed that due to irregularities in electricity demand at the
household level, forecasting demand at the household level is
indeed more difficult than at the distribution or transmission
level [36]. Chaouch used functional wavelet-kernel and then
improved it by clustering daily load curves and trained each
cluster separately [8]. The approach took only the historical
load curve as input, and therefore a careful modification need
to be performed to account for external factors, such as cal-
endar variables or temperatures. In contrast, by using machine
learning algorithms (such as Linear Regression, Multi-Layer
Perceptron, or Support Vector Machine), incorporating new
external factors is essentially adding new elements to the
feature vector. Thus, as there will be more and more contextual
data concerning households available in the future, machine
learning algorithms facilitate the seamless addition of new

features.10

Haben et al. proposed the adjusted error measure to tolerate
forecasted values that are slightly misplaced in time [13]. The
measure can also be seen as a generalization of the standard
p-norm error. More specifically, when the tolerance magnitude,
w, is equal to zero, the measure reduces to the standard
p-norm errors. It is not scale-independent, however, which
makes it unsuitable to compare or aggregate the accuracy of
the demand forecasts of different households. Furthermore, it
requires permutation of the forecasts, and thus needs cubic
time to compute, whereas most evaluation metrics takes only
linear time.

Misiti et al. [25] and Alzate and Sinn [1] have also consid-

10Several works have used demographic information to estimate electricity
demand. See, e.g., [21], [24], [26], [39].
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Fig. 8: Percentage improvement in the NRMSE of the CBAF strategy (compared to the traditional aggregate forecast, k = 1) of
500, 1,000, 2,000, and 3,639 customers over a different number of clusters and clustering methods (the higher the better). The
larger the customer set, the higher the improvement gained by CBAF.

ered CBAF.11 However, Misiti et al. consider only industrial
customers, and Alzate and Sinn consider a mix of residential
customers and small/medium enterprises. Additionally, they
focused on wavelet-based and kernel spectral clustering12 and
did not investigate the effect of different customer sizes to the
improvement provided by CBAF.

VI. CONCLUSION

In this paper we evaluated various machine learning algo-
rithms for short-term individual and aggregate forecasting (1
hour and 24 hour ahead) of residential electricity consumption.
Additionally, to measure the forecasting accuracy at the house-
hold level effectively, we use evaluation metrics that are scale-
independent and robust to values approaching zero, namely the
NRMSE and the NMAE. Individual forecasting, in general, is
a challenging task (with NRMSE around 0.5–0.6 and NMAE
around 0.4–0.5). Aggregate forecasting, however, have better
accuracy (with NRMSE around 0.04 and NMAE around 0.03).

Additionally, in our setting, LR, MLP, and SVR outper-
formed SARIMA in the 1 hour and 24 hour ahead forecasting
of individual households. Although MLP and SVR are more so-
phisticated than LR, in individual forecasting, their forecasting
performances are not significantly better than LR (especially
with pth root transformation, where p = 2 or p = 4). In
aggregate forecasting, however, SVR is significantly better than
LR (see, e.g, Figure 7 where k = 1). Therefore, in a real-
world scenario, one should consider the trade-off between the
advantage brought by a more sophisticated model and the cost
to implement and maintain it.

In addition, we proposed a generic algorithm to segment
customers according to a predefined/targeted objective. We
showed its usefulness by forming clusters that (1) maximize
the auto-correlation and (2) minimize the standard deviation
of the clusters’ energy consumption. When using CBAF,
empirically we found that clustering customers into 8 to 10
clusters delivers the best forecasting accuracy across different

11They refer to CBAF as disaggregated load forecasting.
12Interestingly, although [1], [25] and our work focus on different customer

types and use different forecasting and clustering algorithms, all conclude
that clustering customers and forecasting each cluster separately could indeed
improve aggregate forecasts.

error metrics, forecating algorithms, and clustering approaches.
Additionally, we also found that the improvement provided by
the CBAF strategy depends not only on the number of clusters,
but also on the size of customer base. More specifically, CBAF
improves traditional aggregate forecasting when the size of
the customer base is above a certain threshold. Conversely, no
improvement is achieved when the size of the customer base
is below this threshold, no matter which clustering methods is
applied. In general, however, the larger the size of the customer
base, the higher the improvement offered by CBAF.

Finally, the effectiveness of CBAF shall not be limited only
to smart grid analytics. Practically, it can be used in other fields
as well, where multiple sensor measurements are available for
building an aggregate view of an environment. For example,
in the field of participatory sensing or weather forecasting,
one can used CBAF similarly by first clustering sensor nodes,
forecasting them separately, and then aggregate the forecasts.
Additionally, one might be more interested to aggregate by
averaging rather than summing them up, e.g., for obtaining a
more accurate temperature of a certain region from multiple
sensors.
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