7 research outputs found

    Approximate Voronoi cells for lattices, revisited

    Get PDF
    We revisit the approximate Voronoi cells approach for solving the closest vector problem with preprocessing (CVPP) on high-dimensional lattices, and settle the open problem of Doulgerakis-Laarhoven-De Weger [PQCrypto, 2019] of determining exact asymptotics on the volume of these Voronoi cells under the Gaussian heuristic. As a result, we obtain improved upper bounds on the time complexity of the randomized iterative slicer when using less than 20.076d+o(d)2^{0.076d + o(d)} memory, and we show how to obtain time-memory trade-offs even when using less than 20.048d+o(d)2^{0.048d + o(d)} memory. We also settle the open problem of obtaining a continuous trade-off between the size of the advice and the query time complexity, as the time complexity with subexponential advice in our approach scales as dd/2+o(d)d^{d/2 + o(d)}, matching worst-case enumeration bounds, and achieving the same asymptotic scaling as average-case enumeration algorithms for the closest vector problem.Comment: 18 pages, 1 figur

    Solving the Closest Vector Problem in 2n2^n Time--- The Discrete Gaussian Strikes Again!

    Get PDF
    We give a 2n+o(n)2^{n+o(n)}-time and space randomized algorithm for solving the exact Closest Vector Problem (CVP) on nn-dimensional Euclidean lattices. This improves on the previous fastest algorithm, the deterministic O~(4n)\widetilde{O}(4^{n})-time and O~(2n)\widetilde{O}(2^{n})-space algorithm of Micciancio and Voulgaris. We achieve our main result in three steps. First, we show how to modify the sampling algorithm from [ADRS15] to solve the problem of discrete Gaussian sampling over lattice shifts, LtL- t, with very low parameters. While the actual algorithm is a natural generalization of [ADRS15], the analysis uses substantial new ideas. This yields a 2n+o(n)2^{n+o(n)}-time algorithm for approximate CVP for any approximation factor γ=1+2o(n/logn)\gamma = 1+2^{-o(n/\log n)}. Second, we show that the approximate closest vectors to a target vector tt can be grouped into "lower-dimensional clusters," and we use this to obtain a recursive reduction from exact CVP to a variant of approximate CVP that "behaves well with these clusters." Third, we show that our discrete Gaussian sampling algorithm can be used to solve this variant of approximate CVP. The analysis depends crucially on some new properties of the discrete Gaussian distribution and approximate closest vectors, which might be of independent interest

    On the Quantitative Hardness of CVP

    Full text link
    \newcommand{\eps}{\varepsilon} \newcommand{\problem}[1]{\ensuremath{\mathrm{#1}} } \newcommand{\CVP}{\problem{CVP}} \newcommand{\SVP}{\problem{SVP}} \newcommand{\CVPP}{\problem{CVPP}} \newcommand{\ensuremath}[1]{#1} For odd integers p1p \geq 1 (and p=p = \infty), we show that the Closest Vector Problem in the p\ell_p norm (\CVP_p) over rank nn lattices cannot be solved in 2^{(1-\eps) n} time for any constant \eps > 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to "almost all" values of p1p \geq 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of \CVP_2 (i.e., \CVP in the Euclidean norm), for which a 2n+o(n)2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p=p(n)2p = p(n) \neq 2 that approaches 22 as nn \to \infty. We also show a similar SETH-hardness result for \SVP_\infty; hardness of approximating \CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other quantitative hardness results for \CVP_p and \CVPP_p for any 1p<1 \leq p < \infty under different assumptions

    On the Shadow Simplex Method for Curved Polyhedra

    Get PDF
    We study the simplex method over polyhedra satisfying certain “discrete curvature” lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al (SOCG 2012), Brunsch and Röglin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved our understanding of such polyhedra. We develop a new type of dual analysis of the shadow simplex method which provides a clean and powerful tool for improving all previously mentioned results. Our methods are inspired by the recent work of Bonifas and the first named author [4], who analyzed a remarkably similar process as part of an algorithm for the Closest Vector Problem with Preprocessing. For our first result, we obtain a constructive diameter bound of O( n2 ln n ) for n-dimensional polyhedra with curvature parameter 2 [0, 1]. For the class of polyhedra arising from totally unimodular constraint matrices, this implies a bound of O(n3 ln n). For linear optimization, given an initial feasible vertex, we show that an optimal vertex can be found using an expected O( n3 ln n ) simplex pivots, each requiring O(mn) time to compute. An initial feasible solutioncan be found using O(mn3 ln n ) pivot steps
    corecore