3,406 research outputs found
MTHFD1 controls DNA methylation in Arabidopsis.
DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases
One-carbon metabolism in cancer
Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism
A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic hydroxymethyltransferase and induces cell death in lung cancer cells
Serine hydroxymethyltransferase (SHMT) is a central enzyme in the metabolic reprogramming of cancer cells, providing activated one-carbon units in the serine-glycine one-carbon metabolism. Previous studies demonstrated that the cytoplasmic isoform of SHMT (SHMT1) plays a relevant role in lung cancer. SHMT1 is overexpressed in lung cancer patients and NSCLC cell lines. Moreover, SHMT1 is required to maintain DNA integrity. Depletion in lung cancer cell lines causes cell cycle arrest and uracil accumulation and ultimately leads to apoptosis. We found that a pyrazolopyran compound, namely 2.12, preferentially inhibits SHMT1 compared to the mitochondrial counterpart SHMT2. Computational and crystallographic approaches suggest binding at the active site of SHMT1 and a competitive inhibition mechanism. A radio isotopic activity assay shows that inhibition of SHMT by 2.12 also occurs in living cells. Moreover, administration of 2.12 in A549 and H1299 lung cancer cell lines causes apoptosis at LD50 34 μM and rescue experiments underlined selectivity towards SHMT1. These data not only further highlight the relevance of the cytoplasmic isoform SHMT1 in lung cancer but, more importantly, demonstrate that, at least in vitro, it is possible to find selective inhibitors against one specific isoform of SHMT, a key target in metabolic reprogramming of many cancer types
A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector
We describe a search method for fast moving ()
magnetic monopoles using simultaneously the scintillator, streamer tube and
track-etch subdetectors of the MACRO apparatus. The first two subdetectors are
used primarily for the identification of candidates while the track-etch one is
used as the final tool for their rejection or confirmation. Using this
technique, a first sample of more than two years of data has been analyzed
without any evidence of a magnetic monopole. We set a 90% CL upper limit to the
local monopole flux of in the
velocity range and for nucleon decay
catalysis cross section smaller than .Comment: 29 pages (12 figures). Accepted by Astroparticle Physic
Serine biosynthesis with one carbon catabolism represents a novel pathway for ATP generation in cells using alternative glycolysis with zero net ATP production
Recent experimental evidence indicates that some cancer cells have an alternative glycolysis pathway with net zero ATP production, implying that upregulation of glycolysis in these cells may not be related to the generation of ATP. Here we use a genome-scale model of human cell metabolism to investigate the potential metabolic alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP generation that involves reactions from the serine biosynthesis and one-carbon metabolism pathways. This pathway has a predicted two-fold higher flux rate in cells using net zero ATP glycolysis than those using standard glycolysis and generates twice as much ATP with significantly lower rate of lactate- but higher rate of alanine secretion. Thus, in cells using the standard- or the net zero ATP glycolysis pathways a significant portion of the glycolysis flux is always associated with ATP generation, and the ratio between the flux rates of the two pathways determines the rate of ATP generation and lactate and alanine secretion during glycolysis
Photorespiration: metabolic pathways and their role in stress protection
Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/
oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the
photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic
process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus
making photorespiration a wasteful process. However, precisely because of this ine¤ciency, photorespiration
could serve as an energy sink preventing the overreduction of the photosynthetic electron transport
chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic
CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g.
glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we
describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways.
In addition, we discuss the possible role of photorespiration under stress conditions, such as
drought, high salt concentrations and high light intensities encountered by alpine plants
Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines
The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers
Drug interactions may be important risk factors for methotrexate neurotoxicity, particularly in pediatric leukemia patients
Purpose: Methotrexate administration is associated with
frequent adverse neurological events during treatment for
childhood acute lymphoblastic leukemia. Here, we present
evidence to support the role of common drug interactions
and low vitamin B12 levels in potentiating methotrexate
neurotoxicity.
Methods: We review the published evidence and highlight
key potential drug interactions as well as present clinical
evidence of severe methotrexate neurotoxicity in conjunction
with nitrous oxide anesthesia and measurements of
vitamin B12 levels among pediatric leukemia patients during
therapy.
Results: We describe a very plausible mechanism for
methotrexate neurotoxicity in pediatric leukemia patients
involving reduction in methionine and consequential disruption
of myelin production. We provide evidence that a
number of commonly prescribed drugs in pediatric leukemia
management interact with the same folate biosynthetic
pathways and/or reduce functional vitamin B12 levels and
hence are likely to increase the toxicity of methotrexate in
these patients. We also present a brief case study supporting
out hypothesis that nitrous oxide contributes to methotrexate
neurotoxicity and a nutritional study, showing that
patients.
Conclusions: Use of nitrous oxide in pediatric leukemia
patients at the same time as methotrexate use should be
avoided especially as many suitable alternative anesthetic
agents exist. Clinicians should consider monitoring levels
of vitamin B12 in patients suspected of having methotrexate-
induced neurotoxic effects
Transfusão de concentrado de hemácias na UTI do Hospital Universitário da UFSC.
Trabalho de Conclusão de Curso - Universidade Federal de Santa Catarina. Curso de Medicina. Departamento de Clínica Médica
- …
