3 research outputs found

    A Survey on Integrated Circuit Trojans

    Get PDF
    Traditionally, computer security has been associated with the software security, or the information-data security. Surprisingly, the hardware on which the software executes or the information stored-processed-transmitted has been assumed to be a trusted base of security. The main building blocks of any electronic device are Integrated circuits (ICs) which form the fabric of a computer system. Lately, the use of ICs has expanded from handheld calculators and personal computers (PCs) to smartphones, servers, and Internet-of-Things (IoT) devices. However, this significant growth in the IC market created intense competition among IC vendors, leading to new trends in IC manufacturing. System-on-chip (SoC) design based on intellectual property (IP), a globally spread supply chain of production and distribution of ICs are the foremost of these trends. The emerging trends have resulted in many security and trust weaknesses and vulnerabilities, in computer systems. This includes Hardware Trojans attacks, side-channel attacks, Reverse-engineering, IP piracy, IC counterfeiting, micro probing, physical tampering, and acquisition of private or valuable assets by debugging and testing. IC security and trust vulnerabilities may cause loss of private information, modified/altered functions, which may cause a great economical hazard and big damage to society. Thus, it is crucial to examine the security and trust threats existing in the IC lifecycle and build defense mechanisms against IC Trojan threats. In this article, we examine the IC supply chain and define the possible IC Trojan threats for the parties involved. Then we survey the latest progress of research in the area of countermeasures against the IC Trojan attacks and discuss the challenges and expectations in this area. Keywords: IC supply chain, IC security, IP privacy, hardware trojans, IC trojans DOI: 10.7176/CEIS/12-2-01 Publication date: April 30th 202

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects
    corecore