8 research outputs found

    Sheaf-Theoretic Stratification Learning

    Get PDF
    In this paper, we investigate a sheaf-theoretic interpretation of stratification learning. Motivated by the work of Alexandroff (1937) and McCord (1978), we aim to redirect efforts in the computational topology of triangulated compact polyhedra to the much more computable realm of sheaves on partially ordered sets. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (2012), and the cohomology stratification algorithm given in Nanda (2017). We envision that our sheaf-theoretic algorithm could give rise to a larger class of stratification beyond homology-based stratification. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms

    Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives

    Get PDF
    In this paper, we investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (2012), and the cohomology stratification algorithm given in Nanda (2017). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms

    Stratified Space Learning: Reconstructing Embedded Graphs

    Full text link
    Many data-rich industries are interested in the efficient discovery and modelling of structures underlying large data sets, as it allows for the fast triage and dimension reduction of large volumes of data embedded in high dimensional spaces. The modelling of these underlying structures is also beneficial for the creation of simulated data that better represents real data. In particular, for systems testing in cases where the use of real data streams might prove impractical or otherwise undesirable. We seek to discover and model the structure by combining methods from topological data analysis with numerical modelling. As a first step in combining these two areas, we examine the recovery of the abstract graph GG structure, and model a linear embedding ∣G∣|G| given only a noisy point cloud sample XX of ∣G∣|G|.Comment: 7 pages, 3 figures, accepted for MODSIM 2019 conferenc

    The topological correctness of PL approximations of isomanifolds

    Get PDF
    Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f : Rd → Rd−n. A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation T of the ambient space Rd. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation T . This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary

    Trianguler les sous-variétés: une version élémentaire et quantifiée de la méthode de Whitney

    Get PDF
    International audienceWe quantize Whitney's construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric
    corecore