29,609 research outputs found

    Stress-Induced Phase Transformations in Shape-Memory Polycrystals

    Get PDF
    Shape-memory alloys undergo a solid-to-solid phase transformation involving a change of crystal structure. We examine model problems in the scalar setting motivated by the situation when this transformation is induced by the application of stress in a polycrystalline material made of numerous grains of the same crystalline solid with varying orientations. We show that the onset of transformation in a granular polycrystal with homogeneous elasticity is in fact predicted accurately by the so-called Sachs bound based on the ansatz of uniform stress. We also present a simple example where the onset of phase transformation is given by the Sachs bound, and the extent of phase transformation is given by the constant strain Taylor bound. Finally we discuss the stress–strain relations of the general problem using Milton–Serkov bounds

    Tight bounds on the maximum size of a set of permutations with bounded VC-dimension

    Get PDF
    The VC-dimension of a family P of n-permutations is the largest integer k such that the set of restrictions of the permutations in P on some k-tuple of positions is the set of all k! permutation patterns. Let r_k(n) be the maximum size of a set of n-permutations with VC-dimension k. Raz showed that r_2(n) grows exponentially in n. We show that r_3(n)=2^Theta(n log(alpha(n))) and for every s >= 4, we have almost tight upper and lower bounds of the form 2^{n poly(alpha(n))}. We also study the maximum number p_k(n) of 1-entries in an n x n (0,1)-matrix with no (k+1)-tuple of columns containing all (k+1)-permutation matrices. We determine that p_3(n) = Theta(n alpha(n)) and that p_s(n) can be bounded by functions of the form n 2^poly(alpha(n)) for every fixed s >= 4. We also show that for every positive s there is a slowly growing function zeta_s(m) (of the form 2^poly(alpha(m)) for every fixed s >= 5) satisfying the following. For all positive integers n and B and every n x n (0,1)-matrix M with zeta_s(n)Bn 1-entries, the rows of M can be partitioned into s intervals so that at least B columns contain at least B 1-entries in each of the intervals.Comment: 22 pages, 4 figures, correction of the bound on r_3 in the abstract and other minor change

    Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations

    Full text link
    Let lambda_s(n) denote the maximum length of a Davenport-Schinzel sequence of order s on n symbols. For s=3 it is known that lambda_3(n) = Theta(n alpha(n)) (Hart and Sharir, 1986). For general s>=4 there are almost-tight upper and lower bounds, both of the form n * 2^poly(alpha(n)) (Agarwal, Sharir, and Shor, 1989). Our first result is an improvement of the upper-bound technique of Agarwal et al. We obtain improved upper bounds for s>=6, which are tight for even s up to lower-order terms in the exponent. More importantly, we also present a new technique for deriving upper bounds for lambda_s(n). With this new technique we: (1) re-derive the upper bound of lambda_3(n) <= 2n alpha(n) + O(n sqrt alpha(n)) (first shown by Klazar, 1999); (2) re-derive our own new upper bounds for general s; and (3) obtain improved upper bounds for the generalized Davenport-Schinzel sequences considered by Adamec, Klazar, and Valtr (1992). Regarding lower bounds, we show that lambda_3(n) >= 2n alpha(n) - O(n), and therefore, the coefficient 2 is tight. We also present a simpler version of the construction of Agarwal, Sharir, and Shor that achieves the known lower bounds for even s>=4.Comment: To appear in Journal of the ACM. 48 pages, 3 figure

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form a⋯b⋯a⋯b⋯a \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s≀3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs−1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201

    Froth-like minimizers of a non local free energy functional with competing interactions

    Full text link
    We investigate the ground and low energy states of a one dimensional non local free energy functional describing at a mean field level a spin system with both ferromagnetic and antiferromagnetic interactions. In particular, the antiferromagnetic interaction is assumed to have a range much larger than the ferromagnetic one. The competition between these two effects is expected to lead to the spontaneous emergence of a regular alternation of long intervals on which the spin profile is magnetized either up or down, with an oscillation scale intermediate between the range of the ferromagnetic and that of the antiferromagnetic interaction. In this sense, the optimal or quasi-optimal profiles are "froth-like": if seen on the scale of the antiferromagnetic potential they look neutral, but if seen at the microscope they actually consist of big bubbles of two different phases alternating among each other. In this paper we prove the validity of this picture, we compute the oscillation scale of the quasi-optimal profiles and we quantify their distance in norm from a reference periodic profile. The proof consists of two main steps: we first coarse grain the system on a scale intermediate between the range of the ferromagnetic potential and the expected optimal oscillation scale; in this way we reduce the original functional to an effective "sharp interface" one. Next, we study the latter by reflection positivity methods, which require as a key ingredient the exact locality of the short range term. Our proof has the conceptual interest of combining coarse graining with reflection positivity methods, an idea that is presumably useful in much more general contexts than the one studied here.Comment: 38 pages, 2 figure

    On the optimal design of wall-to-wall heat transport

    Full text link
    We consider the problem of optimizing heat transport through an incompressible fluid layer. Modeling passive scalar transport by advection-diffusion, we maximize the mean rate of total transport by a divergence-free velocity field. Subject to various boundary conditions and intensity constraints, we prove that the maximal rate of transport scales linearly in the r.m.s. kinetic energy and, up to possible logarithmic corrections, as the 1/31/3rd power of the mean enstrophy in the advective regime. This makes rigorous a previous prediction on the near optimality of convection rolls for energy-constrained transport. Optimal designs for enstrophy-constrained transport are significantly more difficult to describe: we introduce a "branching" flow design with an unbounded number of degrees of freedom and prove it achieves nearly optimal transport. The main technical tool behind these results is a variational principle for evaluating the transport of candidate designs. The principle admits dual formulations for bounding transport from above and below. While the upper bound is closely related to the "background method", the lower bound reveals a connection between the optimal design problems considered herein and other apparently related model problems from mathematical materials science. These connections serve to motivate designs.Comment: Minor revisions from review. To appear in Comm. Pure Appl. Mat

    Improved bounds on the number of ternary square-free words

    Get PDF
    Improved upper and lower bounds on the number of square-free ternary words are obtained. The upper bound is based on the enumeration of square-free ternary words up to length 110. The lower bound is derived by constructing generalised Brinkhuis triples. The problem of finding such triples can essentially be reduced to a combinatorial problem, which can efficiently be treated by computer. In particular, it is shown that the number of square-free ternary words of length n grows at least as 65^(n/40), replacing the previous best lower bound of 2^(n/17).Comment: 17 pages, AMS LaTeX. Paper has been completely rewritten and comprises new results on both lower and upper bounds. The Mathematica program mentioned in the article can be downloaded at http://mcs.open.ac.uk/ugg2/wordcomb/brinkhuistriples.
    • 

    corecore