18,857 research outputs found

    PickCells: A Physically Reconfigurable Cell-composed Touchscreen

    Get PDF
    Touchscreens are the predominant medium for interactions with digital services; however, their current fixed form factor narrows the scope for rich physical interactions by limiting interaction possibilities to a single, planar surface. In this paper we introduce the concept of PickCells, a fully reconfigurable device concept composed of cells, that breaks the mould of rigid screens and explores a modular system that affords rich sets of tangible interactions and novel acrossdevice relationships. Through a series of co-design activities – involving HCI experts and potential end-users of such systems – we synthesised a design space aimed at inspiring future research, giving researchers and designers a framework in which to explore modular screen interactions. The design space we propose unifies existing works on modular touch surfaces under a general framework and broadens horizons by opening up unexplored spaces providing new interaction possibilities. In this paper, we present the PickCells concept, a design space of modular touch surfaces, and propose a toolkit for quick scenario prototyping

    Multimedia Markup Tools for OpenKnowledge

    No full text
    OpenKnowledge is a peer-to-peer system for sharing knowledge and is driven by interaction models that give the necessary context for mapping of ontological knowledge fragments necessary for the interaction to take place. The OpenKnowledge system is agnostic to any specific data formats that are used in the interactions, relying on ontology mapping techniques for shimming the messages. The potentially large search space for matching ontologies is reduced by the shared context of the interaction. In this paper we investigate what this means for multimedia data on the OpenKnowledge network by discussing how an existing application that provides multimedia annotation (the Semantic Logger) can be migrated into the OpenKnowledge domain

    Físchlár-DiamondTouch: collaborative video searching on a table

    Get PDF
    In this paper we present the system we have developed for our participation in the annual TRECVid benchmarking activity, specically the system we have developed, Físchlár-DT, for participation in the interactive search task of TRECVid 2005. Our back-end search engine uses a combination of a text search which operates over the automatic speech recognised text, and an image search which uses low-level image features matched against video keyframes. The two novel aspects of our work are the fact that we are evaluating collaborative, team-based search among groups of users working together, and that we are using a novel touch-sensitive tabletop interface and interaction device known as the DiamondTouch to support this collaborative search. The paper summarises the backend search systems as well as presenting the interface we have developed, in detail

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    Semantic Perceptual Image Compression using Deep Convolution Networks

    Full text link
    It has long been considered a significant problem to improve the visual quality of lossy image and video compression. Recent advances in computing power together with the availability of large training data sets has increased interest in the application of deep learning cnns to address image recognition and image processing tasks. Here, we present a powerful cnn tailored to the specific task of semantic image understanding to achieve higher visual quality in lossy compression. A modest increase in complexity is incorporated to the encoder which allows a standard, off-the-shelf jpeg decoder to be used. While jpeg encoding may be optimized for generic images, the process is ultimately unaware of the specific content of the image to be compressed. Our technique makes jpeg content-aware by designing and training a model to identify multiple semantic regions in a given image. Unlike object detection techniques, our model does not require labeling of object positions and is able to identify objects in a single pass. We present a new cnn architecture directed specifically to image compression, which generates a map that highlights semantically-salient regions so that they can be encoded at higher quality as compared to background regions. By adding a complete set of features for every class, and then taking a threshold over the sum of all feature activations, we generate a map that highlights semantically-salient regions so that they can be encoded at a better quality compared to background regions. Experiments are presented on the Kodak PhotoCD dataset and the MIT Saliency Benchmark dataset, in which our algorithm achieves higher visual quality for the same compressed size.Comment: Accepted to Data Compression Conference, 11 pages, 5 figure
    corecore