4 research outputs found

    The Research of Secret Image Sharing Based on RS Erasure Code

    Get PDF
    AbstractSecret image sharing is an attractive research problem in information security filed. After more than ten years of development, secret image sharing has become a relatively independent area. Most current secret image sharing scheme used Lagrange interpolation of Shamir scheme as the core idea, but which way will greatly reduce the computational efficiency and system availability without a doubt because of a huge amount of data in images. According to the internal relationship between coding theory and secret sharing technology, the paper proposed a secret image scheme based on coding theory. In addition to have advantages which most secret image sharing schemes based on Lagrange interpolation own, the new method which has a more simple idea reduced computational complexity and easy to extend the field of video and audio, so has a more obvious practical value; The design and realization of the new secret image sharing scheme has indirectly proved the internal relationship between coding and secret sharing scheme

    A Reversible Steganography Scheme of Secret Image Sharing Based on Cellular Automata and Least Significant Bits Construction

    Get PDF
    Secret image sharing schemes have been extensively studied by far. However, there are just a few schemes that can restore both the secret image and the cover image losslessly. These schemes have one or more defects in the following aspects: (1) high computation cost; (2) overflow issue existing when modulus operation is used to restore the cover image and the secret image; (3) part of the cover image being severely modified and the stego images having worse visual quality. In this paper, we combine the methods of least significant bits construction (LSBC) and dynamic embedding with one-dimensional cellular automata to propose a new lossless scheme which solves the above issues and can resist differential attack and support parallel computing. Experimental results also show that this scheme has the merit of big embedding capacity

    Secret color images sharing schemes based on XOR operation

    Get PDF
    This paper presents two new constructions for the secret color images sharing schemes .One is a (n, n) threshold scheme, which can be constructed based on XOR operation. The other is a (2, n) threshold scheme, which can be constructed by using AND and XOR operations. The two schemes have no pixel expansion, and the time complexity for constructing shared images is O(k1n), excluding the time needed for generating n distinct random matrices (here k1 is the size of the shared image). The reconstructed images can be obtained in the two schemes by using the XOR operation alone. The relative differences of the two schemes are 1 and 1/2, respectively. The time complexity of the recovered images is O(k1n) and O(2k1), respectively. The two schemes also provide perfect secrecy

    Application of Stochastic Diffusion for Hiding High Fidelity Encrypted Images

    Get PDF
    Cryptography coupled with information hiding has received increased attention in recent years and has become a major research theme because of the importance of protecting encrypted information in any Electronic Data Interchange system in a way that is both discrete and covert. One of the essential limitations in any cryptography system is that the encrypted data provides an indication on its importance which arouses suspicion and makes it vulnerable to attack. Information hiding of Steganography provides a potential solution to this issue by making the data imperceptible, the security of the hidden information being a threat only if its existence is detected through Steganalysis. This paper focuses on a study methods for hiding encrypted information, specifically, methods that encrypt data before embedding in host data where the ‘data’ is in the form of a full colour digital image. Such methods provide a greater level of data security especially when the information is to be submitted over the Internet, for example, since a potential attacker needs to first detect, then extract and then decrypt the embedded data in order to recover the original information. After providing an extensive survey of the current methods available, we present a new method of encrypting and then hiding full colour images in three full colour host images with out loss of fidelity following data extraction and decryption. The application of this technique, which is based on a technique called ‘Stochastic Diffusion’ are wide ranging and include covert image information interchange, digital image authentication, video authentication, copyright protection and digital rights management of image data in general
    corecore