4 research outputs found

    Shared-memory Graph Truss Decomposition

    Full text link
    We present PKT, a new shared-memory parallel algorithm and OpenMP implementation for the truss decomposition of large sparse graphs. A k-truss is a dense subgraph definition that can be considered a relaxation of a clique. Truss decomposition refers to a partitioning of all the edges in the graph based on their k-truss membership. The truss decomposition of a graph has many applications. We show that our new approach PKT consistently outperforms other truss decomposition approaches for a collection of large sparse graphs and on a 24-core shared-memory server. PKT is based on a recently proposed algorithm for k-core decomposition.Comment: 10 pages, conference submissio

    Shared-Memory Parallel Maximal Clique Enumeration

    Get PDF
    We present shared-memory parallel methods for Maximal Clique Enumeration (MCE) from a graph. MCE is a fundamental and well-studied graph analytics task, and is a widely used primitive for identifying dense structures in a graph. Due to its computationally intensive nature, parallel methods are imperative for dealing with large graphs. However, surprisingly, there do not yet exist scalable and parallel methods for MCE on a shared-memory parallel machine. In this work, we present efficient shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing that they can scale to a large number of processors, and (3) our implementations on a multicore machine shows a good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE.Comment: 10 pages, 3 figures, proceedings of the 25th IEEE International Conference on. High Performance Computing, Data, and Analytics (HiPC), 201

    Quickly Finding a Truss in a Haystack

    Get PDF
    The k-truss of a graph is a subgraph such that each edge is tightly connected to the remaining elements in the k-truss. The k-truss of a graph can also represent an important community in the graph. Finding the k-truss of a graph can be done in a polynomial amount of time, in contrast finding other subgraphs such as cliques. While there are numerous formulations and algorithms for finding the maximal k-truss of a graph, many of these tend to be computationally expensive and do not scale well. Many algorithms are iterative and use static graph triangle counting in each iteration of the graph. In this work we present a novel algorithm for finding both the k- truss of the graph (for a given k), as well as the maximal k-truss using a dynamic graph formulation. Our algorithm has two main benefits. 1) Unlike many algorithms that rerun the static graph triangle counting after the removal of nonconforming edges, we use a new dynamic graph formulation that only requires updating the edges affected by the removal. As our updates are local, we only do a fraction of the work compared to the other algorithms. 2) Our algorithm is extremely scalable and is able to concurrently detect deleted triangles in contrast to past sequential approaches. While our algorithm is architecture independent, we show a CUDA based implementation for NVIDIA GPUs. In numerous instances, our new algorithm is anywhere from 100X-10000X faster than the Graph Challenge benchmark. Furthermore, our algorithm shows significant speedups, in some cases over 70X, over a recently developed sequential and highly optimized algorithm
    corecore