11,059 research outputs found

    Entropies from coarse-graining: convex polytopes vs. ellipsoids

    Full text link
    We examine the Boltzmann/Gibbs/Shannon SBGS\mathcal{S}_{BGS} and the non-additive Havrda-Charv\'{a}t / Dar\'{o}czy/Cressie-Read/Tsallis \ Sq\mathcal{S}_q \ and the Kaniadakis κ\kappa-entropy \ Sκ\mathcal{S}_\kappa \ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky's theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.Comment: 63 pages. No figures. Standard LaTe

    Shape-preserving wavelet-based multivariate density estimation

    Full text link
    Wavelet estimators for a probability density f enjoy many good properties, however they are not "shape-preserving" in the sense that the final estimate may not be non-negative or integrate to unity. A solution to negativity issues may be to estimate first the square-root of f and then square this estimate up. This paper proposes and investigates such an estimation scheme, generalising to higher dimensions some previous constructions which are valid only in one dimension. The estimation is mainly based on nearest-neighbour-balls. The theoretical properties of the proposed estimator are obtained, and it is shown to reach the optimal rate of convergence uniformly over large classes of densities under mild conditions. Simulations show that the new estimator performs as well in general as the classical wavelet estimator, while automatically producing estimates which are bona fide densities

    Total positivity and accurate computations with Gram matrices of Said-Ball bases

    Get PDF
    In this article, it is proved that Gram matrices of totally positive bases of the space of polynomials of a given degree on a compact interval are totally positive. Conditions to guarantee computations to high relative accuracy with those matrices are also obtained. Furthermore, a fast and accurate algorithm to compute the bidiagonal factorization of Gram matrices of the Said-Ball bases is obtained and used to compute to high relative accuracy their singular values and inverses, as well as the solution of some linear systems associated with these matrices. Numerical examples are included
    • …
    corecore