2,555 research outputs found

    A Leaf Recognition Algorithm for Plant Classification Using Probabilistic Neural Network

    Full text link
    In this paper, we employ Probabilistic Neural Network (PNN) with image and data processing techniques to implement a general purpose automated leaf recognition algorithm. 12 leaf features are extracted and orthogonalized into 5 principal variables which consist the input vector of the PNN. The PNN is trained by 1800 leaves to classify 32 kinds of plants with an accuracy greater than 90%. Compared with other approaches, our algorithm is an accurate artificial intelligence approach which is fast in execution and easy in implementation.Comment: 6 pages, 3 figures, 2 table

    A Model of Plant Identification System Using GLCM, Lacunarity And Shen Features

    Get PDF
    Recently, many approaches have been introduced by several researchers to identify plants. Now, applications of texture, shape, color and vein features are common practices. However, there are many possibilities of methods can be developed to improve the performance of such identification systems. Therefore, several experiments had been conducted in this research. As a result, a new novel approach by using combination of Gray-Level Co-occurrence Matrix, lacunarity and Shen features and a Bayesian classifier gives a better result compared to other plant identification systems. For comparison, this research used two kinds of several datasets that were usually used for testing the performance of each plant identification system. The results show that the system gives an accuracy rate of 97.19% when using the Flavia dataset and 95.00% when using the Foliage dataset and outperforms other approaches.Comment: 10 page

    MedLeaf: Mobile Application for Medicinal Plant Identification Based on Leaf Image

    Get PDF
    This research proposes MedLeaf as a new mobile application for medicinal plants identification based on leaf image. The application runs on the Android operating system. MedLeaf has two main functionalities, i.e. medicinal plants identification and document searching of medicinal plant. We used Local Binary Pattern to extract leaf texture and Probabilistic Neural Network to classify the image. In this research, we used30 species of Indonesian medicinal plants and each species consists of 48 digital leaf images. To evaluate user satisfaction of the application we used questionnaire based on heuristic evaluation. The evaluation result shows that MedLeaf is promising for medicinal plants identification. MedLeaf will help botanical garden or natural reserve park management to identify medicinal plant, discover new plant species, plant taxonomy and so on. Also, it will help individual, groups and communities to find unused and undeveloped their skill to optimize the potential of medicinal plants. As the results, MedLeaf will increase of their resources, capitals, and economic wealth

    A neuro-genetic hybrid approach to automatic identification of plant leaves

    Get PDF
    Plants are essential for the existence of most living things on this planet. Plants are used for providing food, shelter, and medicine. The ability to identify plants is very important for several applications, including conservation of endangered plant species, rehabilitation of lands after mining activities and differentiating crop plants from weeds. In recent times, many researchers have made attempts to develop automated plant species recognition systems. However, the current computer-based plants recognition systems have limitations as some plants are naturally complex, thus it is difficult to extract and represent their features. Further, natural differences of features within the same plant and similarities between plants of different species cause problems in classification. This thesis developed a novel hybrid intelligent system based on a neuro-genetic model for automatic recognition of plants using leaf image analysis based on novel approach of combining several image descriptors with Cellular Neural Networks (CNN), Genetic Algorithm (GA), and Probabilistic Neural Networks (PNN) to address classification challenges in plant computer-based plant species identification using the images of plant leaves. A GA-based feature selection module was developed to select the best of these leaf features. Particle Swam Optimization (PSO) and Principal Component Analysis (PCA) were also used sideways for comparison and to provide rigorous feature selection and analysis. Statistical analysis using ANOVA and correlation techniques confirmed the effectiveness of the GA-based and PSO-based techniques as there were no redundant features, since the subset of features selected by both techniques correlated well. The number of principal components (PC) from the past were selected by conventional method associated with PCA. However, in this study, GA was used to select a minimum number of PC from the original PC space. This reduced computational cost with respect to time and increased the accuracy of the classifier used. The algebraic nature of the GA’s fitness function ensures good performance of the GA. Furthermore, GA was also used to optimize the parameters of a CNN (CNN for image segmentation) and then uniquely combined with PNN to improve and stabilize the performance of the classification system. The CNN (being an ordinary differential equation (ODE)) was solved using Runge-Kutta 4th order algorithm in order to minimize descritisation errors associated with edge detection. This study involved the extraction of 112 features from the images of plant species found in the Flavia dataset (publically available) using MATLAB programming environment. These features include Zernike Moments (20 ZMs), Fourier Descriptors (21 FDs), Legendre Moments (20 LMs), Hu 7 Moments (7 Hu7Ms), Texture Properties (22 TP) , Geometrical Properties (10 GP), and Colour features (12 CF). With the use of GA, only 14 features were finally selected for optimal accuracy. The PNN was genetically optimized to ensure optimal accuracy since it is not the best practise to fix the tunning parameters for the PNN arbitrarily. Two separate GA algorithms were implemented to optimize the PNN, that is, the GA provided by MATLAB Optimization Toolbox (GA1) and a separately implemented GA (GA2). The best chromosome (PNN spread) for GA1 was 0.035 with associated classification accuracy of 91.3740% while a spread value of 0.06 was obtained from GA2 giving rise to improved classification accuracy of 92.62%. The PNN-based classifier used in this study was benchmarked against other classifiers such as Multi-layer perceptron (MLP), K Nearest Neigbhour (kNN), Naive Bayes Classifier (NBC), Radial Basis Function (RBF), Ensemble classifiers (Adaboost). The best candidate among these classifiers was the genetically optimized PNN. Some computational theoretic properties on PNN are also presented

    Malaysian medicinal plant leaf shape identification and classification

    Get PDF
    Malaysian medicinal plants may be abundant natural resources but there has not been much research done on preserving the knowledge of these medicinal plants which enables general public to know the leaf using computing capability.This study proposes a framework to identify and classify tropical medicinal plants in Malaysia based the extracted patterns from the leaf.The extracted patterns from medicinal plant leaf are obtained based on several angle features.Five classifiers, obtained from WEKA and an ensemble classifier, called Direct Ensemble Classifier for Imbalanced Multiclass Learning (DECIML), are used to compare their performance accuracies over this data.In this experiment, five species of Malaysian medicinal plants are identified and classified in which each species will be represented by using 65 images.This study is important in order to assist local community to utilize the knowledge discovery and application of Malaysian medicinal plants for future generation

    On The Application Of Genetic Probabilistic Neural Networksand Cellular Neural Networks In Precision Agriculture

    Get PDF
    This article details the effect of Gaussian smoothing parameter (spread) on the performance of Probabilistic Neural Networks (PNN). Two (2) different Genetic Algorithms (GAs) were used to optimize the PNN spread in order to avoid under and over fitting. In this work there is a novel combination of Cellular Neural Networks (CNN), Probabilistic Neural Networks (PNN) and GA to address the present challenges on automatic identification of plant species. Such problems include misclassification species of plants that are similar in shapes and image segmentation speed. In this work, GA was used in both feature selection and PNN parameter optimization. The GA developed herein improved the performance of the PNN. This work serves as a framework for building image classification or pattern recognition system
    • …
    corecore